IIR document
Development of a continuous empirical correlation for non adiabatic capillary tube using R-600A and R-134A as refrigerants.
Number: pap. TP-0026
Author(s) : RASTI M., BAN J. H., JEONG J. H.
Summary
A capillary tube-suction line heat exchanger (CT-SLHX) is widely used as a refrigerant expansion device in small sized refrigeration and air-conditioning systems, which enhances the refrigeration capacity and ensures that a superheated vapor of refrigerant enters the compressor. To calculate mass flow rate in a capillary tube, it is necessary to develop an accurate non-adiabatic capillary tube model. In the present study, conservation laws in a one dimension was used to generate reference data. An empirical model which is continuous at saturated liquid point is developed for both subcooled and two-phase capillary tube inlet conditions with introduction of new dimensionless p parameters. Wide ranges of capillary tube inner diameter, capillary total length, capillary inlet quality or subcooling temperature, heat exchanger length, suction line diameter, capillary inlet pressure, evaporator inlet temperature, superheating temperature and refrigerant type are used in the process of data generation. The new model shows a good agreement with experimental data.
Available documents
Format PDF
Pages: 8
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Development of a continuous empirical correlation for non adiabatic capillary tube using R-600A and R-134A as refrigerants.
- Record ID : 30021530
- Languages: English
- Source: 5th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants.
- Publication date: 2017/04/23
- DOI: http://dx.doi.org/10.18462/iir.tptpr.2017.0026
Links
See other articles from the proceedings (84)
See the conference proceedings
Indexing
-
Themes:
HFCs;
Expansion systems;
Hydrocarbons - Keywords: Refrigerating system; R600a; R134a; Small scale; Correlation; Capillary tube; Modelling
-
Experimental and numerical investigation of R13...
- Author(s) : KHAN M. K., KUMAR R., SAHOO P. K.
- Date : 2008/11
- Languages : English
- Source: HVAC&R Research - vol. 14 - n. 6
View record
-
Fast calculation method for modeling non-adiaba...
- Author(s) : ZHAO D., DING G., REN T.
- Date : 2013/04
- Languages : Chinese
- Source: Journal of Refrigeration - vol. 34 - n. 2
- Formats : PDF
View record
-
A generalized correlation for the characteristi...
- Author(s) : YANG L., WANG W.
- Date : 2008/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 31 - n. 2
- Formats : PDF
View record
-
Mathematical model of the flow of natural refri...
- Author(s) : YAN G. I., WU Q., CAO X., et al.
- Date : 2002/09/17
- Languages : English
- Formats : PDF
View record
-
Empirical correlations for the modelling of R13...
- Author(s) : MELO C., NETO C. B., SILVA FERREIRA R. T. da
- Date : 1999
- Languages : English
- Source: ASHRAE Transactions. 1999 Annual Meeting, Seattle, Washington + CD-ROM.
View record