IIR document
Performance predictions of adiabatic flow of isobutane inside a helically coiled capillary tube: artificial neural network.
Number: 1121
Author(s) : DUBBA S. K., MENDA V. R., DHURANDHER B. K., KUMAR R.
Summary
This paper presents an artificial neural network correlation for predicting the mass flow rate of R-600a inside a helically coiled capillary tube. 480 sets of experimental measured mass flow rate data of R-600a inside straight and helically coiled capillary tube covering wide range of inlet sub-cooling degree of 3-15°C, inlet pressure 600-750 kPa, capillary geometry (capillary tube diameter: 1.12-1.52 mm and length: 2.8-4.6 m) and coil diameter of 40, 60 & 80, collected from the literature to train the neural network model. The artificial neural network model of an adiabatic straight capillary tube shows the variation from the experimental data with ±20 percentage error. In addition, the artificial neural network model of an adiabatic coiled capillary tube predicts the mass flow rate data within ±20 percentage of experimental data.
Available documents
Format PDF
Pages: 7
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Performance predictions of adiabatic flow of isobutane inside a helically coiled capillary tube: artificial neural network.
- Record ID : 30027649
- Languages: English
- Source: IIR Rankine Conference 2020.
- Publication date: 2020/07/31
- DOI: http://dx.doi.org/10.18462/iir.rankine.2020.1121
Links
See other articles from the proceedings (75)
See the conference proceedings
Indexing
-
Themes:
Hydrocarbons;
Expansion systems - Keywords: R600a; Isobutane; Capillary tube; Helical tube; Coil; Artificial neural network; Prediction; Flow rate; Model
-
Performance predictions using Artificial Neural...
- Author(s) : HEIMEL M., LANG W., ALMBAUER R.
- Date : 2014/02
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 38
- Formats : PDF
View record
-
Generalized correlation of refrigerant mass flo...
- Author(s) : KIM H. J.
- Date : 2005/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 28 - n. 4
- Formats : PDF
View record
-
Model-based neural network correlation for refr...
- Author(s) : ZHANG C. L., ZHAO L. X.
- Date : 2007/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 30 - n. 4
- Formats : PDF
View record
-
Effect of surface roughness on the mass flow ra...
- Author(s) : MARTINS ROCHA T. T., HENRIQUE DE PAULA C., MELO CANGUSSU V., TORRES MAIA A. A., NUNES DE OLIVEIRA R.
- Date : 2020/10
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 118
- Formats : PDF
View record
-
Modeling of refrigerant flow through adiabatic ...
- Author(s) : LI Z., SHAO L., YANG L., et al.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record