Development of a lumped parameter model for hermetic reciprocating compressor with thermal electrical coupling.

Number: pap. 1367

Author(s) : DUTRA T., DESCHAMPS C. J.

Summary

The design of high-efficiency reciprocating compressors requires good understanding of interactions between different phenomena inside the compressor. This paper describes a comprehensive model to predict the performance of reciprocating compressors with thermal-electrical coupling. The simulation of the compression cycle is based on an integral control volume formulation for mass and energy conservation. The thermal model follows steady state thermal energy balances applied to the compressor components by using global thermal conductances. Finally, the equivalent circuit method is employed to simulate a steady-state model of single-phase induction motor. The motor losses are used as heat generation in the energy equation of the thermal model, which in turn provides the motor temperature required to evaluate the windings resistances. Predictions are compared to experimental data under different operating conditions and reasonable agreement is observed.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Development of a lumped parameter model for hermetic reciprocating compressor with thermal electrical coupling.
  • Record ID : 30014033
  • Languages: English
  • Source: 2014 Purdue Conferences. 22nd International Compressor Engineering Conference at Purdue.
  • Publication date: 2014/07/14

Links


See other articles from the proceedings (138)
See the conference proceedings