IIR document
Experimental investigation on the thermodynamic performance of double-row liquid–vapor separation microchannel condenser.
Author(s) : ZHONG T. M., CHEN Y., YANG Q. C., et al.
Type of article: Article, IJR article
Summary
A double-row liquid–vapor separation microchannel condenser (D-LSMC) was presented, and its tube pass scheme was optimized using the theoretical method. A series of experiments were conducted to investigate the heat load, average heat transfer coefficient (AHTC), and pressure drop of the optimal D-LSMC. Experimental results were compared with an optimal common double-row parallel-flow microchannel condenser (D-PFMC). The findings showed that, at the inlet mass flux of 585?kgm-2?s-1 to 874?kgm-2?s-1, the AHTC of the D-LSMC was 3.3%–14.4% higher than that of the D-PFMC. However, the pressure drop of the D-LSMC was only 43.4%–52.1% of that of the D-PFMC. The heat exchange capacity of the back row was weaker by almost half of that of the front row. In addition, the tube wall temperature of the back row decreased faster than that of the front row, which indicated that the back row had a larger pressure drop. The minimum entropy generation number (Ns) was used to evaluate the D-LSMC and the D-PFMC, which indicated the greater thermodynamic performance of the D-LSMC.
Available documents
Format PDF
Pages: 373-382
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Experimental investigation on the thermodynamic performance of double-row liquid–vapor separation microchannel condenser.
- Record ID : 30017817
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 67
- Publication date: 2016/07
Links
See other articles in this issue (36)
See the source
-
Experimental investigation of double rows liqui...
- Author(s) : ZHONG T. M., CHEN Y., YANG Q. C., et al.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record
-
Alternative evaluation of liquid-to-suction hea...
- Author(s) : HERMES C. J. L.
- Date : 2013/12
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 36 - n. 8
- Formats : PDF
View record
-
Novel FANNO curve for incompressible fluid flow.
- Author(s) : SOUMERAI H.
- Date : 2011
- Languages : English
- Formats : PDF
View record
-
Evaluation of suction line-liquid line heat exc...
- Author(s) : DOMANSKI P. A., DIDION D. A., DOYLE J. P.
- Date : 1992/07/14
- Languages : English
View record
-
Evaluation of suction line/liquid line heat exc...
- Author(s) : DOMANSKI P. A., DIDION D. A., DOYLE J. P.
- Date : 1994/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 17 - n. 7
- Formats : PDF
View record