IIR document

Experimental study on the matching relationship of gas wave oscillation tube under liquid-carrying condition.

Author(s) : LIU P., WANG H., YU Y., WANG Z., FAN H., HU D.

Type of article: IJR article

Summary

The gas wave oscillation tube (GWOT) transfers energy directly between gases of varying pressures using non-constant motion waves, and its low rotational speed operation offers a broader application potential in two-phase refrigeration compared to turbomachinery. The GWOTs achieve a high performance by optimizing the relationship between tube length, deflection displacement, rotational speed, and incident excitation wave (S1) velocity. However, under the liquid-carrying conditions, the optimizing matching relationship of the GWOTs deviates, leading to a decline in performance, so it is necessary to explore the matching relationship of the high performance of the GWOTs under the liquid-carrying conditions. This study focuses on "spoon" GWOTs, analyzing the impact of rotational speed, liquid-carrying capacity, and deflection displacement on their refrigeration performance under a fixed tube length through experimental analysis. It is found that the refrigeration efficiency at the design parameters of the GWOTs decreases by a maximum of about 25 % with the increase in the amount of liquid-carrying capacity within the study area of this paper, while the refrigeration efficiency can be improved by a maximum of about 8 % by varying the rotational speed. The findings provide valuable insights for enhancing the liquid-carrying performance of the GWOTs and promoting the application expansion of GWOTs in the field of gas-liquid two-phase.

Available documents

Format PDF

Pages: 326-333

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Experimental study on the matching relationship of gas wave oscillation tube under liquid-carrying condition.
  • Record ID : 30032863
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 168
  • Publication date: 2024/12
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.09.018

Links


See other articles in this issue (63)
See the source