
Harnessing nanomaterials for enhanced energy efficiency in transpired solar collectors: a review of their integration in Phase-Change Materials.
Author(s) : CROITORU C., BODE F., CALOTA R., BERVILLE C., GEORGESCU M.
Type of article: Periodical article, Review
Summary
The building sector plays an important role in the global climate change mitigation objectives. The reduction of CO2 emissions and energy consumption in the building sector has been intensively investigated in the last decades, with solar thermal energy considered to be one of the most promising solutions due to its abundance and accessibility. However, the discontinuity of solar energy has led to the study of thermal energy storage to improve the thermal performance of solar thermal systems. In this review paper, the integration of various types of phase-change materials (PCMs) in transpired solar collectors (TSC) is reviewed and discussed, with an emphasis on heat transfer enhancements, including nanomaterials. Thermal energy storage applied to TSC is studied in terms of design criteria, materials technologies, and its impact on thermal conductivity. This review highlights the potential of nanomaterial technology integration in terms of thermal performance improvements. The utilization of nanomaterials in solar walls holds the potential to significantly enhance their performance. The integration of diverse materials such as graphene, graphite, metal oxides, and carbon nanoparticles can pave the way for improving thermal conductivity.
Available documents
Format PDF
Pages: 18 p.
Available
Free
Details
- Original title: Harnessing nanomaterials for enhanced energy efficiency in transpired solar collectors: a review of their integration in Phase-Change Materials.
- Record ID : 30033268
- Languages: English
- Subject: Technology
- Source: Energies - vol. 17 - n. 5
- Publishers: MDPI
- Publication date: 2024/03
- DOI: http://dx.doi.org/https://doi.org/10.3390/en17051239
Links
See other articles in this issue (6)
See the source
Indexing
-
Review on nano enhanced PCMs: Insight on nePCM ...
- Author(s) : MEBAREK-OUDINA F., CHABANI I.
- Date : 2023/02
- Languages : English
- Source: Energies - vol. 16 - n. 3
- Formats : PDF
View record
-
Nano-Enhanced Phase Change Materials for Therma...
- Author(s) : MOHAMMADPOUR J., LEE A., TIMCHENKO V., TAYLOR R.
- Date : 2022/05
- Languages : English
- Source: Energies - vol. 15 - n. 9
- Formats : PDF
View record
-
Predicting heterogeneous nucleation in ice slur...
- Author(s) : XU M., MOHIT M., GAO Y., SASMITO A.
- Date : 2024/05/31
- Languages : English
- Source: 14th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning. Proceedings: Paris France, May 29-31, 2024.
- Formats : PDF
View record
-
Review on thermal properties with influence fac...
- Author(s) : YUAN H., LIU S., LI T., YANG L., LI D., BAI H., WANG X.
- Date : 2024/02
- Languages : English
- Source: Energies - vol. 17 - n. 3
- Formats : PDF
View record
-
Solidification and melting process of water-bas...
- Author(s) : YAMASHIRO K., IWAMOTO Y., IDO Y., TOLSTOREBROV I., EIKEVIK T. M.
- Date : 2024/06/11
- Languages : English
- Source: 8th IIR International Conference on Sustainability and the Cold Chain. Proceedings: June 9-11 2024
- Formats : PDF
View record