Inherently safe looped thermosyphon cooling system for aircraft applications using dielectric fluid h-galden.

Number: pap. n. R1, 2234

Author(s) : LOHSE E., SCHMITZ G.

Summary

This paper presents experimental results of an inherently safe liquid cooling system. A test rig is operated at Hamburg University of Technology in order to prove the concept and gather first data for electronics cooling in modern civil aircraft. The cooling system uses a dielectric working fluid for the natural circulation in a looped thermosyphon operating in both one- and two-phase mode. First the mass flow of this natural circulation system is investigated comparing the measurement data to calculations. After that the cooling performance of the system is evaluated by taking a closer look at the heat loads and corresponding temperatures. Finally heat transfer coefficients in the cold plate are calculated. The results are discussed with respect to the following parameters, which are varied in the test series conducted: heat load, the heat sink temperature and the system orientation.

Available documents

Format PDF

Pages: 8 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Inherently safe looped thermosyphon cooling system for aircraft applications using dielectric fluid h-galden.
  • Record ID : 30000477
  • Languages: English
  • Source: 2010 Purdue Conferences. 13th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2010/07/12

Links


See other articles from the proceedings (121)
See the conference proceedings