IIR document

Low conductive thermal insulation pad with high mechanical stiffness.

Author(s) : HANZELKA P., DUPAK L., KRUTIL V., KRZYZANEK V., SKOUPY R., SRNKA A., VLCEK I., URBAN P.

Type of article: IJR article

Summary

We present a low conductive thermal insulation pad named InBallPad (IBP), which we designed for placing of a sample holder of an ultra-high vacuum scanning probe microscope (UHV SPM) associated with Scanning Electron Microscopy (SEM). The microscope will operate at variable temperatures of sample holder in the range of 20 K – 700 K. IBP with diameter of 30 mm, height of 11 mm and mass of 34 g consists of a top and bottom plate made of titanium alloy which are mutually separated by specially designed low heat conductive glass ball supports. The sample holder is mounted onto the top plate whereas the bottom plate serves for mechanical connection to a piezoelectric scanner of SPM at approximately room temperature. IBP is characterized by a high lateral mechanical stiffness of 106 N/m and a low heat flow of 120 mW between the bottom and the top plate at temperatures of 290 K and 25 K, respectively. The use of the pad is not limited to the UHV SPM only, but the component is generally suitable for any devices where the sample holders work in high or ultra-high vacuum and where a wide temperature span from cryogenic to high temperatures is needed.

Available documents

Format PDF

Pages: 92-99

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Low conductive thermal insulation pad with high mechanical stiffness.
  • Record ID : 30029216
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 132
  • Publication date: 2021/12
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2021.09.019
  • Document available for consultation in the library of the IIR headquarters only.

Links


See other articles in this issue (28)
See the source