Summary
Solar energy and wasted heat in buildings are capable of supplying enough energy to answer the total demand of energy in dwellings. However, fluctuation in fuel prices and gas emissions are the main driving forces behind efforts. In this experimental study, a direct expansion solar-assisted heat pump system (DX-SAHP) using a bare ternary “retrofitted collectors with black paint” is investigated at the laboratory with a solar simulator and tested for domestic hot water (DHW) and space heating under quasi-static conditions. Unglazed solar collector absorber plates are used as an evaporator, and these are composed of two aluminium plates which are placed externally whilst another plate is mounted internally in the loft space of the house, where operating liquid from the heat pump is directly evaporated. The influence of outside temperature, solar irradiation and/or waste heat on the heating performance of DX-SAHP is investigated. The impact of the parameters such as the inlet temperature and the mass flow rate of the heat transfer fluid is also assessed. Preliminary results elucidate that the refrigeration cycle can be a promising substitute for space heating and hot water when compared to the heat pump systems. This design technique results in higher solar collector/evaporator efficiency and lower system losses due to low evaporating temperature.
Available documents
Format PDF
Pages: 134-150
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Low-temperature solar-plate-assisted heat pump: A developed design for domestic applications in cold climate.
- Record ID : 30022180
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 81
- Publication date: 2017/09
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2017.05.020
Links
See other articles in this issue (13)
See the source
Indexing
-
Themes:
Heat pumps techniques;
Solar refrigeration - Keywords: Direct expansion; Heat pump; Expérimentation; Solar energy; Heating; Domestic water; Cold climate
-
OBSERVATIONS ON REFRIGERANT FLOW CONTROL IN SOL...
- Author(s) : DIXON C. W., CHARTERS W. W. S., CHANDRA S.
- Date : 1988/09/05
- Languages : English
- Source: Refrigeration for food and people.
- Formats : PDF
View record
-
Influence of subcooling on performance of direc...
- Author(s) : WANG B., KONG X., YAN X., SHANG Y., LI Y.
- Date : 2021/02
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 122
- Formats : PDF
View record
-
Estudio experimental de una bomba de calor de e...
- Author(s) : VALLEJO J. P., FERNÁNDEZ-SEARA J., DIZ R., et al.
- Date : 2016/05/03
- Languages : Spanish
- Source: CYTEF 2016. VIII Congreso Ibérico y VI Congreso Iberoamericano de las Ciencias y Técnicas del Frío, Coimbra-Portugal, 3-6 mayo, 2016.
- Formats : PDF
View record
-
Research development indirect-expansion solar-a...
- Author(s) : FANG X.
- Date : 2009/05
- Languages : Chinese
- Source: HV & AC - vol. 39 - n. 224
- Formats : PDF
View record
-
Direct expansion solar assisted heat pumps: a c...
- Author(s) : TAGLIAFICO L. A., SCARPA F., VALSUANI F.
- Date : 2014/05
- Languages : English
- Source: Applied Thermal Engineering - vol. 66 - n. 1-2
View record