Noise effects in capillary tubes caused by refrigerant flow.

Number: pap. 2009

Author(s) : TANNERT T., HESSE U.

Summary

The preferred cooling process for household refrigeration appliances is a vapor compression refrigeration process with a capillary tube as expansion device. The vapor compression refrigeration system requires a phase change of the refrigerant inside the condenser and evaporator. The condenser outlet defines directly the refrigerant state at the capillary tube inlet through a direct connection of condenser outlet and capillary tube inlet. This is commonly practiced for household refrigeration systems. Due to unsteady operation conditions the refrigerant state can change from subcooled liquid to saturated liquid with partially a vapor phase at the capillary tube inlet. The refrigerant flow inside the capillary tube is either adiabatic or non-adiabatic (by utilizing internal heat exchange). In both cases the refrigerants state of matter changes during the expansion with an increase of vapor quality towards the capillary tube outlet. A variable vapor quality at the capillary tube inlet causes different flow patterns, especially at the capillary tube outlet. These flow patterns change periodically depending on the refrigerant state of matter at the capillary tube inlet. Associated with the periodical changing flow patterns the occurrence of noise effects with the same periodicity and remarkable variations of the sound pressure level can be observed at the capillary tube outlet. This paper presents the experimental investigations on the simultaneous occurrence of refrigerant flow patterns and corresponding noise effects at the outlet of a capillary tube installed in a refrigeration test cycle. The discussion of the experimental results leads to an explanation of causal relation between distinguishable flow patterns and corresponding noise effects.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Noise effects in capillary tubes caused by refrigerant flow.
  • Record ID : 30018765
  • Languages: English
  • Source: 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2016/07/11

Links


See other articles from the proceedings (274)
See the conference proceedings