IIR document

Simulation of membrane heat pump system performance for space cooling.

Author(s) : BUKSHAISHA A. A., FRONK B. M.

Type of article: Article, IJR article

Summary

Membrane based heat pumps systems have attracted the attention of many research groups as a potentially more environmentally friendly alternative to vapor compression systems for space cooling. Several prototype systems have been developed, with reported claims of Energy Efficiency Ratios (EER) approaching 26. At present, no detailed analysis is publicly available which simulates the capability of these systems in different climate zones. In this work, a thermodynamic cycle model of a representative membrane heat pump system is developed and heat and mass transfer components are sized to provide 3 t of cooling at nominal rating conditions. The performance of the 3 t system is then simulated in various climate regions using representative cooling loads calculated from a building energy modeling software. The simulated membrane heat pump system had an EER of 16–20. Compared with the performance of a commercial vapor compression system, the membrane system performs better at higher dry-bulb temperature and shows energy saving potential in all climate regions examined. While the membrane system shows potential from a thermodynamic perspective, there are many practical challenges that must be addressed prior to commercialization including the design of an efficient vacuum pump, mitigating membrane fouling and reliability issues, and developing advanced controls to maintain desired sensible and latent heating capacities.

Available documents

Format PDF

Pages: 371-381

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Simulation of membrane heat pump system performance for space cooling.
  • Record ID : 30025520
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 99
  • Publication date: 2019/03
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2018.12.010

Links


See other articles in this issue (45)
See the source