Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles.
Author(s) : TORREGROSA-JAIME B., CORBERÁN J. M., PAYÁ J., et al.
Type of article: Article
Summary
The use of air conditioning in all-electric cars reduces their driving range by 33% in average. With the purpose of reducing the energy consumption of the vehicle and optimising the performance of the batteries, the mobile air-conditioning can be integrated with the temperature control system of the powertrain by means of a coolant loop. In such layouts, the air-to-coolant heat exchangers must operate efficiently in both air heating and cooling modes. Dynamic simulation tools comprising the entire thermal system are essential to assess its performance. In this context, fast but accurate models of the system components are required. This paper presents the thermal characterisation of a commercial compact louvered-fin flat-tube heat exchanger (heater core) for this novel application, based on an experimental campaign comprising 279 working points that reflect real air-conditioning (heating and cooling) working conditions. A general methodology to fit a single correlation of the global heat transfer coefficient for both dry and wet working conditions is explained. The semiempirical correlation developed is employed in a single-node model of the heat exchanger that requires minimal computation time. The present model predicts the heat transfer rate with an average deviation of 3.5% in the cases with dehumidification and 1.9% in the cases when the heat exchanger remains dry.
Details
- Original title: Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles.
- Record ID : 30021179
- Languages: English
- Source: Applied Thermal Engineering - vol. 115
- Publication date: 2017/03/25
- DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.01.017
Links
See other articles in this issue (31)
See the source
-
Energetic performance evaluation of an automoti...
- Author(s) : LEI Q., SONG X., YU B., LIU C., SHI J., CHEN J.
- Date : 2023/08
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 152
- Formats : PDF
View record
-
Intelligent energy management control of vehicl...
- Author(s) : KHAYYAM H., NAHAVANDI S., HU E., et al.
- Date : 2011/11
- Languages : English
- Source: Applied Thermal Engineering - vol. 31 - n. 16
View record
-
Performance analysis of a thermal management sy...
- Author(s) : ZHANG L., HIGASHI T., SAIKAWA M.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
A modular thermal simulation tool for computing...
- Author(s) : DULLINGER C., STRUCKL W., KOZEK M.
- Date : 2015/03
- Languages : English
- Source: Applied Thermal Engineering - vol. 78
View record
-
Sleeping evaporator and refrigerant maldistribu...
- Author(s) : GILLET T., ANDRES E., EL-BAKKALI A., et al.
- Date : 2018/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 90
- Formats : PDF
View record