Summary
Brazed plate heat exchanger (BPHE) has gained more advantages of refrigerant inventory reduction and high efficiency due to smaller chevron channel. This paper experimentally investigates the heat transfer and pressure drop of R32 and R410A flow boiling in BPHEs with 1 mm chevron depth and W– and V– chevron patterns. Variations in heat transfer coefficient (HTC) and frictional pressure drop (FPD) with mass flux (15 − 40 kg m−2 s−1 for R32 and 25 − 60 kg m−2 s−1 for R410A) and imposed heat flux (from 6 − 14 kW m−2) are analyzed for each combination of the two refrigerants and two types of plate patterns. The HTC of R32 is approximately 10 % and 30 % higher than that of R410A at same mass flux in W– and V–shaped plates, respectively, which has an equivalent friction factor. The V–shaped plate is found more suited for R32 compared to the W–shaped plate. The existing available transition criterions fail to predict the flow boiling heat transfer mechanism in microscale channel, and convective boiling seems dominant in 1 mm chevron depth channel under the present working conditions, particularly for R32. The HTC correlations of Hsieh and Lin, and Palmer et al. fit the measured data relatively well with 96 and 80 % data within the deviation of ±20 %, respectively. Huang et al. correlation exhibits fare predictability for FPD, with more than 80 % data within the deviation of ±25 %.
Available documents
Format PDF
Pages: 190-207
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Thermal−hydraulic characteristics of R32 and R410A flow boiling in plate heat exchangers with 1 mm chevron depth.
- Record ID : 30032853
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 168
- Publication date: 2024/12
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.08.017
Links
See other articles in this issue (63)
See the source
Indexing
-
Thermal−hydraulic characteristics of R32 and R4...
- Author(s) : WEI W., LIN K., DU Y., XU C., LI X.
- Date : 2024/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 162
- Formats : PDF
View record
-
Flow boiling of R32 inside a brazed plate heat ...
- Author(s) : DEL COL D., ROSSATO M., CHINELLATO F., et al.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record
-
Flow boiling of R32 inside a brazed plate heat ...
- Author(s) : ROSSATO M., DEL COL D., MUZZOLON A., et al.
- Date : 2016/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 69
- Formats : PDF
View record
-
HFC32 vaporisation inside a Brazed Plate Heat E...
- Author(s) : LONGO G. A., MANCIN S., RIGHETTI G., et al.
- Date : 2015/09
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 57
- Formats : PDF
View record
-
HFO1234ze(E) boiling inside a brazed plate heat...
- Author(s) : LONGO G. A., MANCIN S., RIGHETTI G., et al.
- Date : 2016/07/11
- Languages : English
- Source: 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record