IIR document

Thermal resistance-capacitance network model for fast simulation on the desiccant coated devices used for effective electronic cooling.

Author(s) : LIU H. R., HUA B. J., WANG C. X., WANG R. Z.

Type of article: IJR article

Summary

Numerous novel devices have already utilized desiccant coating to implement various functions, such as atmospheric water harvesting, energy storage, and thermal/humidity management. The mathematical models employed in former literature, for instance the finite-element or finite-volume models usually suffer significant drawbacks such as extreme complexity and time-consuming. To solve this problem, this paper outlines a general strategy to develop dynamic compact thermal models of the quasi-one-dimensional sorption-based systems in the virtue of the thermal resistance-capacitance network. To be specific, the mass transfer process induced by the adsorption/desorption process is equivalent to a heat/cooling source, therefore the coupled heat and mass transfer kinetics in the corresponding device can be evaluated simultaneously. Two comprehensive experimental prototypes in our previous literature are employed to validate the effectiveness of the proposed model. The results show that our model can forecast the transient thermal behavior of the devices accurately within a few seconds. The dynamic deviation of the system output, for instance the material temperature and outlet air humidity, between simulation and experiment is within 7%. Furthermore, a parametric study is conducted based on the proposed model to analyze the influence of key parameters on system performance, showing great potential for guiding the system design and optimization.

Available documents

Format PDF

Pages: 78-86

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Thermal resistance-capacitance network model for fast simulation on the desiccant coated devices used for effective electronic cooling.
  • Record ID : 30029112
  • Languages: English
  • Subject: Technology
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
  • Publication date: 2021/11
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2021.07.038
  • Document available for consultation in the library of the IIR headquarters only.

Links


See other articles in this issue (95)
See the source