IIR document

Thermodynamic modelling of two-phase R-744 ejectors in R-744 heat pumps.

Number: 1173

Author(s) : KRIEZI E. E., KANBUR B. B., MARKUSSEN W. B.

Summary

This study presents a thermodynamic model for a specific two-phase R-744 ejector geometry to predict the mass flow rates at both motive and suction inlets, ejector outlet pressure, mass entrainment ratio, and ejector efficiency by using two approaches that are i) local coefficient-based approach and ii) predicted local coefficient-based approach. A total number of 66 experimental cases at supercritical motive inlet conditions were used to calculate local coefficients for each case individually, while a neural network-based prediction
algorithm was used to predict those local coefficients and make the local coefficients less dependent on the experimental data-based adjustment. The results showed that the predicted local coefficient-based approach estimated the mass flow rate at the motive inlet, ejector outlet pressure, and quality with maximum deviations up to 5 %, 5 %, and 8 %, respectively. However, there is a high deviation in the calculation of the suction nozzle mass flow.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Thermodynamic modelling of two-phase R-744 ejectors in R-744 heat pumps.
  • Record ID : 30032691
  • Languages: English
  • Subject: Technology
  • Source: 16th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2024). Proceedings. University of Maryland, College Park, Maryland, USA, August 11-14 2024
  • Publication date: 2024/08
  • DOI: http://dx.doi.org/10.18462/iir.gl2024.1173

Links


See other articles from the proceedings (135)
See the conference proceedings