IIR document

Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids.

Number: pap. n. 254

Author(s) : WLAZLAK A., ZAJACZKOWSKI B., KROLICKI Z., et al.

Summary

Thermosyphons, as passive heat transfer devices, often assist heat pumps and refrigeration systems. Employing nanoadditives enhance their heat transfer capabilities and in consequence improve performance of thermal systems. Here, we analyse thermal resistances and time-dependent boiling characteristics of devices filled with water-based silica and graphene oxide nanofluids, known to enhance heat transfer capabilities of water/glycol solutions. The experimental campaign in this work encompassed source temperatures 40-85°C. Nanofluids reduced thermal resistance of the device at low heat loads. The impact of nanoadditives was restricted to the evaporator section and correlated with the formation of porous layer on the heater's surface. Additionally, nanofluid affected a pseudo-steady state geyser boiling. The frequency and intensity of geyser events depended on the type of nanofluid, surfactants, and temperatures of heat sources.

Available documents

Format PDF

Pages: 10

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Transfer processes in the thermosyphon employing graphene oxide and silica nanofluids.
  • Record ID : 30025974
  • Languages: English
  • Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
  • Publication date: 2019/08/24
  • DOI: http://dx.doi.org/10.18462/iir.icr.2019.0254

Links


See other articles from the proceedings (632)
See the conference proceedings