Summary
A tri-generation system combining cooling, heating, and power generation can contribute to increased system efficiency and thereby reduce greenhouse gas emissions. This study proposed a novel concept using 100-kW polymer electrolyte membrane fuel cells (PEMFCs) as the basis for a tri-generation system with an integrated heat pump and adsorption chiller for greenhouse use. Three configurations of heat pump loop were designed to recover the waste heat from PEMFCs and used either for direct heating or cooling power generation in adsorption cooling. Analyses were carried out in terms of primary energy rate (PER) and exergy efficiencies. Of those investigated, the layout with a heat pump and internal heat exchanger demonstrated the best performance, with PERs of the cooling and heating modes at 0.94 and 0.78, respectively. Additionally, the exergy analysis revealed that the exergies are mostly destroyed at the expansion valve and evaporator due to differences in pressure and temperature. These differences are minimized when the system layout contains a cascade heat pump loop or an internal heat exchanger, thus resolving the problem of exergy destruction. As a result, the total exergy destruction in the system was decreased from 61.11% to 49.18% and 46.60%, respectively. Furthermore, the proposed configurations showed 36.1% and 31.4% lower values in terms of energy consumption compared with relevant works in the heating mode and cooling mode, respectively.
Available documents
Format PDF
Pages: 16 p.
Available
Free
Details
- Original title: Tri-Generation System Configuration Selection Based on Energy and Exergy Analyses.
- Record ID : 30030889
- Languages: English
- Subject: Technology
- Source: Energies - vol. 15 - n. 21
- Publishers: MDPI
- Publication date: 2022/11
- DOI: http://dx.doi.org/10.3390/en15217958
Links
See other articles in this issue (29)
See the source
Indexing
-
Themes:
Cogeneration (CHP), trigeneration;
Heat pumps techniques - Keywords: Trigeneration; Membrane; Fuel cell; Polymer; Exergy; Simulation; Energy consumption; Chiller; Adsorption
-
Experimental investigation of a micro-CHP unit ...
- Author(s) : DAVILA C., PAULUS N, LEMORT V.
- Date : 2022
- Languages : English
- Source: 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
ANALYSIS OF INTERNAL COMBUSTION ENGINE-DRIVEN H...
- Author(s) : WOLKERSTORFER G., JAEGHER P. de
- Date : 1990/09
- Languages : English
- Source: IEA HPC Newsl. - vol. 8 - n. 3
View record
-
Power-based energy grade study of China's on-gr...
- Author(s) : WU B., WANG L.
- Date : 2015/01
- Languages : English
- Source: Applied Thermal Engineering - vol. 75
View record
-
Development of an integrated energy simulation ...
- Author(s) : SATOH M., TSUJIMARU N., MURAKAMI S., et al.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record
-
Heat pumps in energy concepts.
- Author(s) : WUNNIK A. W. M. van
- Date : 1993/04/26
- Languages : English
View record