A novel model considered mass and energy conservation for both liquid and vapor in adsorption refrigeration systems.

Number: pap. 2467

Author(s) : LIN T. Y., WU C. C., CHEN T. C.

Summary

In this paper, we proposed a dynamic model for a two-bed adsorption refrigeration system. Different from most existing researches which assume saturation vapor pressure in each device, the proposed method models the pressure in each device by considering both the liquid and vapor content in the device. Therefore, it can be more accurate in describing the system response and more suitable for studying the system instrumentation. The components included in this system model are: adsorption bed, evaporator, condenser, expansion valve, and etc. Each device is modeled based on the energy and mass conservation. Furthermore, the adsorption phenomenon is modeled by the “Freundlich equation,” and “linear driving force model.” The phase change of the refrigerant in evaporator and condenser is modeled by Hertz-Knudsen theory. In a case study, the pressure of the adsorption bed during the adsorption process is estimated to be 0.7kPa by the proposed model, while it was 1.6kPa by conventional method which assuming saturated vapor pressure. The coefficient-of-performance of the adsorption system is estimated to be 0.246 by this model, 0.36 by conventional method, and 0.28 by experimental data. The proposed model can estimate system performance more accurate than the conventional method. Moreover, the proposed model also inspire a new instrumentation strategy for the adsorption system, in which the system efficiency is improved and the pressure surge is avoided.

Available documents

Format PDF

Pages: 9

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: A novel model considered mass and energy conservation for both liquid and vapor in adsorption refrigeration systems.
  • Record ID : 30018816
  • Languages: English
  • Source: 2016 Purdue Conferences. 16th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2016/07/11

Links


See other articles from the proceedings (274)
See the conference proceedings