IIR document
A theoretical study on a novel solar based integrated system for simultaneous production of cooling and heating.
Author(s) : KHALIQ A.
Type of article: Article, IJR article
Summary
An integrated system for simultaneous production of triple-effect cooling and single stage heating is proposed in this paper to harness low grade solar energy. The proposed system combines the heliostat field with a central receiver and the ejector-absorption cycle with the shaft power driven transcritical CO2 cycle. A parametric study based on first and second laws of thermodynamics is carried out to ascertain the effect of varying the exit temperature of duratherm oil, turbine inlet pressure, and evaporators temperature on the energy and exergy output as well as on the energy and exergy efficiencies of the system. The results obtained indicate that major source of exergy destruction is the central receiver where 52.5% of the inlet solar heat exergy is lost followed by the heliostat where 25% of the inlet exergy is destroyed. The energy and exergy efficiencies of the integrated system vary from 32% to 39% and 2.5%–4.0%, respectively, with a rise in the hot oil outlet temperature from 160 °C–180 °C. It is further shown that increase in evaporator temperature of transcritical CO2 cycle from -20 °C to 0 °C increases the energy efficiency from 27.45% to 43.27% and exergy efficiency from 2.51% to 2.97%, respectively. The results clearly show how the variation in the values of hot oil outlet temperature, turbine inlet pressure, and the evaporator temperature of transcritical CO2 cycle strongly influences the attainable performance of the integrated system.
Available documents
Format PDF
Pages: 66-82
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: A theoretical study on a novel solar based integrated system for simultaneous production of cooling and heating.
- Record ID : 30013690
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 52
- Publication date: 2015/04
Links
See other articles in this issue (16)
See the source
Indexing
- Themes: Solar refrigeration
- Keywords: Exergy; Design; Cooling; Prototype; Mixed system; Solar energy; Heating
-
Solar-powered refrigerating plant.
- Author(s) : RUDENKO M. F.
- Date : 1999
- Languages : Russian
- Source: Holodil'nyj Biznes - n. 2
View record
-
A new hybrid heating / cooling device: design a...
- Author(s) : GONZÁLEZ M. I., SERNA A., MARTÍNEZ-MAYO R.
- Date : 2012/09/18
- Languages : English
- Source: EuroSun 2012: solar energy for a brighter future. ISES-Europe solar conference. Conference proceedings: Rijeka, Croatia, 18-20 September 2012.
- Formats : PDF
View record
-
A new combined adsorption-ejector refrigeration...
- Author(s) : ZHANG X. J., WANG R. Z.
- Date : 2002/08
- Languages : English
- Source: Applied Thermal Engineering - vol. 22 - n. 11
View record
-
Manufacture and testing of a prototype 30 kW co...
- Author(s) : EAMES I., EVERITT P., GEORGHIADES M., et al.
- Date : 1999/03/24
- Languages : English
- Source: Proceedings of the International Sorption Heat Pump Conference.
View record
-
Ušteda energije za grejanje i hladenje zgrada k...
- Author(s) : BERDYBAEVA M.
- Date : 2014/12/03
- Languages : English
- Source: Zbornik radova. 45. Medunarodnikongres i izložba o grejanju hladenju i klimatizaciji./ Proceedings. 45th International congress and exhibition on heating, refrigeration and air conditioning (HVAC&R).
- Formats : PDF
View record