Artificial neural networks for fast rooftop unit fault impact modeling and simulation.
Number: pap. 2646
Author(s) : HJORTLAND A. L., BRAUN J. E.
Summary
Like any electromechanical system, direct-expansion (DX) air conditioners and heat pumps often develop faults over time that contribute to reduced operating efficiency, more frequent comfort violations, or even premature failure. Automated fault detection and diagnosis (AFDD) methods have been developed for these systems and much experimental effort has been undertaken for their evaluation. In order to reduce development costs required for AFDD technologies, additional research related to modeling DX equipment subject to faults has been undertaken. Investigation of AFDD methods in a virtual environment typically requires relatively detailed equipment models based in some part on thermodynamic principles. Because of these embedded constraints, simulation of faulty equipment operating performance can be time consuming and computationally intensive. In this work, meta-models based on previously developed greybox fault impact models for DX equipment have been developed using artificial neural networks. After tuning these neural network meta-models for different equipment, AFDD performance and fault impacts were simulated using a simple building load model. Significant computational speedups (>3000 times faster) were realized over the original greybox equipment models without loss of significant accuracy. Ultimately through careful meta-model training, it is believed that using neural networks to approximate detailed, computationally-intensive equipment or building models may be useful in applications that require frequent model evaluations.
Available documents
Format PDF
Pages: 12
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Artificial neural networks for fast rooftop unit fault impact modeling and simulation.
- Record ID : 30024703
- Languages: English
- Source: 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2018/07/09
Links
See other articles from the proceedings (252)
See the conference proceedings
Indexing
-
Identification of vapour compression air condit...
- Author(s) : SHOLAHUDIN S., OHNO K., YAMAGUCHI S., et al.
- Date : 2019/08/24
- Languages : English
- Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
View record
-
A control-oriented hybrid model for a direct ex...
- Author(s) : WANG X., XU X.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record
-
Real-time neural inverse optimal control for in...
- Author(s) : MUNOZ F., SANCHEZ E. N., XIA Y., et al.
- Date : 2017/07
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 79
- Formats : PDF
View record
-
Artificial intelligence models for refrigeratio...
- Author(s) : ADELEKAN D. S., OHUNAKIN O. S., PAUL B. S.
- Date : 2022/11
- Languages : English
- Source: Energy Reports - vol. 8
- Formats : PDF
View record
-
Performance prediction of wet cooling tower usi...
- Author(s) : GAO M., SUN F. Z., ZHOU S. J.
- Date : 2009/03
- Languages : English
- Source: International Journal of thermal Sciences - vol. 48 - n. 3
View record