
Summary
The optimized control of variable refrigerant flow (VRF) system requires an accurate time series forecast model for power consumption. Currently, physics-based and black-box models widely used for forecasting power consumption may not be able to capture the dynamic and non-linear behavior of such complex systems. This study presents a long-short-term memory (LSTM), deep learning-based model to accurately predict the power consumption of a VRF system with heat recovery units. The model training used one year of VRF system field test data. The feature selection through the Pearson correlation coefficient was implemented to improve the model's accuracy and computational efficiency. The sensitivity analysis of feature selection was performed by preparing three feature sets, including different levels of relationship with the predicted target. Additionally, the hyperparameters of the models were optimized by Bayesian optimization with the Tree-structured Parzen Estimator algorithm. The deep learning model, LSTM model, was compared to the baseline machine learning model, Artificial Neural Network (ANN) and decision tree. The results show that LSTM-30feat with input time step 4 has the best testing performance of Coefficient of the Variation of the Root Mean Square Error (CvRMSE) 23.3%. The best ANN model is ANN-10feat with input time step 8, which has a CvRMSE of 27.8% in testing and 13,569 trainable parameters. However, LSTM-10feat with input time step 4 has the CvRMSE of 24.8% in testing, and the trainable parameters are 1,809. A higher number of trainable parameters in models might result in increased memory usage on the computer and be computationally expensive.
Available documents
Format PDF
Pages: 55-68
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Comparative study of LSTM and ANN models for power consumption prediction of variable refrigerant flow (VRF) systems in buildings.
- Record ID : 30033207
- Languages: English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 169
- Publication date: 2025/01
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.10.020
Links
See other articles in this issue (33)
See the source
-
Study on neural networks for a residential ener...
- Author(s) : TANAKA A., KOMINE H., SEKI Y., et al.
- Date : 2006/06
- Languages : Japanese
- Source: Transaction of the Society of Heating, Air-conditioning and Sanitary Engineers of Japan - vol. 111
View record
-
Development of dynamic modeling framework using...
- Author(s) : WAN H., CAO T., HWANG Y., CHIN S.
- Date : 2021/05
- Languages : English
- Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
On Hourly Forecasting Heating Energy Consumptio...
- Author(s) : METSÄ-EEROLA I., PULKKINEN J., NIEMITALO O., KOSKELA O.
- Date : 2022/07
- Languages : English
- Source: Energies - vol. 15 - n. 14
- Formats : PDF
View record
-
Machine-learning-based compressor models: A cas...
- Author(s) : WAN H., CAO T., HWANG Y., CHANG S. D., YOON Y. J.
- Date : 2021/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 123
- Formats : PDF
View record
-
Neuro-optimal operation of a variable air volum...
- Author(s) : NING M., ZAHEERUDDIN M.
- Date : 2010/05
- Languages : English
- Source: Applied Thermal Engineering - vol. 30 - n. 5
View record