IIR document
Comprehensive experimental performance study on a small-capacity transcritical R744 vapour-compression refrigeration unit equipped with an innovative ejector.
Author(s) : GULLO P., BIRKELUND M., KRIEZI E. E., KÆRN M. R.
Type of article: IJR article
Summary
Ejector-equipped transcritical R744 condensing units are believed to lead to a low-to-zero commercial refrigeration sector. In order to overcome the persisting barrier to their wider adoption represented by the lack of an affordable ejector control technique, the novel pulse-width modulation (PWM) ejector, being low cost, simple and invulnerable to clogging was recently implemented. However, additional experimental evaluations are needed. Therefore, in this experimental work the performance of two PWM ejector-equipped transcritical R744 condensing units, i.e. with and without overfed evaporator, was carried out. The experimental assessment was implemented at the medium temperature (MT) of about -5 °C, heat sink temperatures from 30 °C to 40 °C and compressor speeds from 40 Hz to 60 Hz.
The outcomes obtained revealed that the PWM ejector can effectively control the high pressure in transcritical operating conditions, regardless of the selected heat sink temperature and compressor speed. In addition, at the same cooling capacity, the PWM ejector-equipped R744 system was found to permit energy savings between 7.0% and 11.1% without overfed evaporator and between 11.5% and 16.3% with overfed evaporator compared to the standard R744 unit (i.e. with vapour by-pass valve and without ejector), respectively. Finally, higher values of coefficient of performance (COP) were found to be offered by the PWM ejector compared with its today's available competitors.
Available documents
Format PDF
Pages: 192-203
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Comprehensive experimental performance study on a small-capacity transcritical R744 vapour-compression refrigeration unit equipped with an innovative ejector.
- Record ID : 30031931
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 152
- Publication date: 2023/08
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2023.05.007
Links
See other articles in this issue (34)
See the source
Indexing
-
Simulation of shock waves in supersonic flow of...
- Author(s) : SERRANO BERANA M., NAKAGAWA M.
- Date : 2012/06/25
- Languages : English
- Source: 10th IIR-Gustav Lorentzen Conference on Natural Working Fluids (GL2012). Proceedings. Delft, The Netherlands, June 25-27, 2012.
- Formats : PDF
View record
-
Analysis of the R744 flow through the ejector d...
- Author(s) : BODYS J., PALACZ M., HAIDA M., SMOLKA J., NOWAK A. J.
- Date : 2020/12/07
- Languages : English
- Source: 14th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2020). Proceedings. Kyoto, Japon, December 7-9th 2020.
- Formats : PDF
View record
-
Review on the simulation models of the two-phas...
- Author(s) : SONG Y., MA Y., WANG H., YIN X., CAO F.
- Date : 2020/11
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 119
- Formats : PDF
View record
-
Modeling of two-phase transcritical CO2 ejector...
- Author(s) : TASLIMI TALEGHANI S., SORIN M., PONCET S.
- Date : 2018/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 87
- Formats : PDF
View record
-
Experimental investigation on the performance o...
- Author(s) : LI Q., GUO X., LI W., et al.
- Date : 2012/10
- Languages : Chinese
- Source: Journal of Refrigeration - vol. 33 - n. 147
- Formats : PDF
View record