IIR document
Thermodynamic analysis of an enhanced ejector vapor injection refrigeration cycle for CO2 transcritical operation at low evaporating temperatures.
Author(s) : ÁVILA GUTIÉRREZ M., PERIS PÉREZ B., DOMÍNGUEZ MUÑOZ F., BESAGNI G., SALMERÓN LISSEN J. M.
Type of article: IJR article
Summary
The main drawback associated with CO2 refrigeration systems is related to their performance reduction during transcritical operation at warm climate conditions, which may be compensated by better cycle architectures such as the split-cycle with subcooling or the flash-tank configuration, among others. Specifically, the use of standard gas-ejectors together with parallel compressors provides even better efficiency improvements, not being able to use them with low-temperature evaporators to prevent the triple point inside the ejector. This paper proposes an enhanced cycle with a gas ejector for two-stage compressor architectures with vapor injection from the flash-tank, which is able to operate at low evaporating temperatures and that provides a greater performance improvement the more severe the climate conditions are. The methodology conducted is based on a thermodynamic analysis that includes parametric evaluation and cycle optimization, comparing the results to a conventional CO2 transcritical cycle with flash-tank and dynamic vapor injection architecture. The main results show that a maximum Coefficient of Performance improvement of 17.5% is achievable for transcritical operation at -40 °C evaporating temperature. The compressor displacement capacity required with the enhanced cycle is up to 9% lower for the same refrigeration demand, reducing the electrical consumption as well as the compressor expenditure. Moreover, greater vapor injection mass flow rates are obtained by the gas-ejector injection with discharge temperature reductions up to 18%, enhancing the system reliability.
Available documents
Format PDF
Pages: 257-276
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Thermodynamic analysis of an enhanced ejector vapor injection refrigeration cycle for CO2 transcritical operation at low evaporating temperatures.
- Record ID : 30032474
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 165
- Publication date: 2024/09
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.06.014
Links
See other articles in this issue (39)
See the source
Indexing
-
Experimental evaluation of a multi-ejector tran...
- Author(s) : SINGH S., HAFNER A., BANASIAK K., et al.
- Date : 2019/08/24
- Languages : English
- Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
View record
-
Integration of a two-phase ejector into a compa...
- Author(s) : ELBEL S., REICHLE M., BOWERS C., et al.
- Date : 2012/06/25
- Languages : English
- Source: 10th IIR-Gustav Lorentzen Conference on Natural Working Fluids (GL2012). Proceedings. Delft, The Netherlands, June 25-27, 2012.
- Formats : PDF
View record
-
Modeling of two-phase transcritical CO2 ejector...
- Author(s) : TASLIMI TALEGHANI S., SORIN M., PONCET S.
- Date : 2018/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 87
- Formats : PDF
View record
-
Simulation and optimization of a R744 two- temp...
- Author(s) : HUANG Z., ZHAO H., YU Z., et al.
- Date : 2018/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 90
- Formats : PDF
View record
-
Performance analysis of a CO2 based ...
- Author(s) : SINGHA P., VAISHAK S., DASGUPTA M. S., BHATTACHARYYA S., HAFNER A., ELARGA H.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record