IIR document

Effect of jet length and ambient temperature on the performance of a two-phase jet impingement heat sink refrigeration system.

Author(s) : OLIVEIRA P. A. de, BARBOSA J. R. Jr

Type of article: Article, IJR article

Summary

The jet impingement heat sink integrated with a compact oil-free R-134a vapor compression refrigeration system introduced in a previous work (Oliveira and Barbosa, 2017) is now further evaluated in terms of the influence of the compressor piston stroke, applied thermal load, orifice-to-heater distance (jet length) and ambient (hot end) temperature. The proposed heat sink is a compact active thermal solution for concentrated heat loads because it integrates the evaporator and the expansion device into a single unit, making use of a single two-phase impinging jet as the cooling mechanism. The present analysis is based on the coefficient of performance and other steady-state heat transfer parameters associated with the impinging jet (heat transfer coefficient and heater surface temperature). A reduction of the jet length promoted a more vigorous splattering of the jet on the heated surface, enhancing the droplet breakup, which in turn reduced significantly the critical heat flux. An increase of the hot reservoir temperature increased the jet impingement heat transfer coefficient.

Available documents

Format PDF

Pages: 331-342

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Effect of jet length and ambient temperature on the performance of a two-phase jet impingement heat sink refrigeration system.
  • Record ID : 30021950
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 75
  • Publication date: 2017/03
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2017.01.001

Links


See other articles in this issue (29)
See the source