Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles.
Author(s) : JAVANI N., DINCER I., NATERER G. F., et al.
Type of article: Article
Summary
In the present study, energy and exergy analyses are conducted to investigate a new cooling system of hybrid electric vehicles (HEVs). A latent heat thermal energy storage system is integrated with an active refrigeration cycle where octadecane is selected as the phase change material (PCM). The liquid cooling system flows through the chiller following a conventional vapor compression cooling cycle. The latent heat shell and the tube heat exchanger operate in parallel with the chiller and a fraction of coolant enters the heat exchanger and, therefore, decreases the heat load of the chiller, leading to a lower work required by the compressor. The exergy destruction rate and the exergy efficiency of each component in a hybrid thermal management system (TMS) are calculated. In addition, the effects of parameters such as the fraction of coolant entering the heat storage system (PCM mass fraction), evaporator temperature, and compressor pressure ratio on the system performance are investigated. The findings of the exergy analysis reveal that the overall exergy efficiency of the system with PCM presence is 31%, having the largest exergy destruction rate of 0.4 kW and the heat exchangers have lower exergy efficiency as compared to other components. In addition, the results of the parametric study show that an increase in PCM mass fraction results in an increase in exergy efficiency of the system. An environmental impact assessment is also conducted and the results show that an increase in exergy efficiency of the cooling system reduces greenhouse gasses and also increases the sustainability of the system. Moreover, a multi-objective optimization using the genetic algorithm is performed by incorporating two objective functions, namely exergy efficiency to be maximized and total cost rate of the system to be minimized. A Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The results show that the maximum exergy efficiency of the system is 34.5% while the minimum total cost rate is 1.38 $/h.
Details
- Original title: Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles.
- Record ID : 30010938
- Languages: English
- Source: Applied Thermal Engineering - vol. 64 - n. 1-2
- Publication date: 2014/03
- DOI: http://dx.doi.org/10.1016/j.applthermaleng.2013.11.053
Links
See other articles in this issue (19)
See the source
-
Secondary loop system for automotive HVAC units...
- Author(s) : LEMKE N. C., LEMKE J. L., KOEHLER J.
- Date : 2012/07/16
- Languages : English
- Source: 2012 Purdue Conferences. 14th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Four E analysis and multi-objective optimizatio...
- Author(s) : NAVIDBAKHSH M., SHIRAZI A., SANAYE S.
- Date : 2013/09
- Languages : English
- Source: Applied Thermal Engineering - vol. 58 - n. 1-2
View record
-
Comparison of exergy analysis between HVAC syst...
- Author(s) : ZHAO J. D., LIU N., ZHOU Y. S.
- Date : 2012/07/01
- Languages : English
- Source: 10th International Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning. Proceedings: Kobe, Japan, July 29-August 1, 2012.
- Formats : PDF
View record
-
Low temperature paraffin phase change emulsions.
- Author(s) : LI H., DOETSCH C., POLLERBERG C.
- Date : 2010/12
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 33 - n. 8
- Formats : PDF
View record
-
A comparative study on PCM and ice thermal ener...
- Author(s) : RAHDAR M. H., EMAMZADEH A., ATAEI A.
- Date : 2016/03/05
- Languages : English
- Source: Applied Thermal Engineering - vol. 96
View record