Experimental investigation of R1336mzz(E) in a high-temperature heat pump.

Summary

Electrically driven high-temperature heat pumps (HTHP) are an attractive technology for decarbonizing industrial process heat. A key factor for HTHP performance and market acceptance are natural and synthetic refrigerants with low global warming potential (GWP). This paper extends previously presented studies on hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) refrigerants in a 10-kW heating capacity laboratory HTHP up to a heat sink outlet temperature of 150 °C. Here, we present experimental test results with the new refrigerant isomer R1336mzz(E), intended for waste heat recovery applications by HTHP and organic Rankine cycles (ORC). R1336mzz(E) benefits from a high volumetric heating capacity, non-flammability (safety class A1), and a low GWP. The working fluid has a critical temperature of 130.4 °C, allowing condensation at about 120 °C. There are only a few theoretical comparisons with the (Z) and (E) isomers, and almost no experimental results have been published for heat pumps. In this study, R1336mzz(E) is tested over a range of 70 °C to 130 °C heat sink outlet temperatures while using a waste heat source between 30 °C and 80 °C. In addition, the experimental results in the laboratory HTHP system are compared with previous tests using R1336mzz(Z), R1233zd(E), R1224yd(Z), and R245fa and with theoretical simulation studies. R1336mzz(E) results show COPs in a comparable range as the previously tested refrigerants, but the heating capacity at the reference condition of W60/W110 was 117% and 18% higher than R1336mzz(Z) and R245fa, respectively. Furthermore, the experimental results align closely with cycle simulations.

Available documents

Format PDF

Pages: 10 p.

Available

Free

Details

  • Original title: Experimental investigation of R1336mzz(E) in a high-temperature heat pump.
  • Record ID : 30030480
  • Languages: English
  • Subject: Technology
  • Source: 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2022/07/10

Links


See other articles from the proceedings (224)
See the conference proceedings