Recommended by the IIR / IIR document
Experiments and exergy analysis for a carbon dioxide ground-source heat pump in cooling mode.
Author(s) : SKYE H. M., WU W.
Type of article: IJR article
Summary
A prototype CO2 ground-source heat pump (GSHP), i.e. a water-to-air heat pump designed to couple with a ground heat exchanger, was tested in cooling mode per ISO standard 13256-1 to provide experimental data for assessing and improving CO2-based GSHPs. The GSHP consisted of a vapor-compression cycle with a liquid-line/suction-line heat exchanger (LLSL-HX). The system operated in a subcritical cycle for antifreeze entering liquid temperature (ELT) ≤ 25 °C and a transcritical cycle for ELT > 25 °C. The ‘Standard’ condition metrics were: coefficient of performance (COP) 4.14, total capacity 6690 W, sensible capacity 5400 W, and sensible-heat ratio (SHR) 0.81. The ‘Part-load’ performance was: COP 4.92, total capacity 7240 W, sensible capacity 5640 W, and SHR 0.78. The GSHP was also tested at additional ELTs ranging (10 to 39) °C, where COP ranged (7.3 to 2.4). Compressor efficiency correlations were shown for these and 118 additional tests. The LLSL-HX was estimated to reduce COP by (0 to 2)% for ELTs ranging (10 to 25) °C, and increase COP by (0 to 5)% for ELTs ranging (30 to 39) °C. At the ‘Standard’ condition the major exergy defects were compressor 0.32, ground heat exchanger 0.19, condenser 0.11, evaporator 0.11, EEV 0.07, pump 0.07, and fan 0.04. The exergy defects were sensitive to ELT, though the compressor was always the largest. Estimated performance of the cycle without the LLSL-HX showed for ELT (10 to 39) °C the HX reduced the EEV throttling defect by (0 to 0.08) and compressor defect by (0 to 0.015), but increased the condenser/gas-cooler defect by (0 to 0.06).
Available documents
Format PDF
Pages: 920-937
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Experiments and exergy analysis for a carbon dioxide ground-source heat pump in cooling mode.
- Record ID : 30029195
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 131
- Publication date: 2021/11
- DOI: http://dx.doi.org/10.1016/j.ijrefrig.2021.08.018
- Document available for consultation in the library of the IIR headquarters only.
Links
See other articles in this issue (95)
See the source
Indexing
-
Themes:
Residential heat-pumps;
CO2 - Keywords: CO2; R744; Ground-source system; Water-source system; Exergy; Expérimentation; Transcritical cycle; Prototype; Domestic heat pump; COP; Test rig
-
Experimental investigation of the extreme seeki...
- Author(s) : CUI C., ZONG S., SONG Y., YIN X., CAO F.
- Date : 2022/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 133
- Formats : PDF
View record
-
Comprehensive evaluation of the transcritical C...
- Author(s) : WANG Y., YIN Y., CAO F.
- Date : 2023/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 145
- Formats : PDF
View record
-
Energy and economic analysis of a sub-cooler ba...
- Author(s) : CUI C., REN J., SONG Y., YIN X., CAO F.
- Date : 2024/03
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 159
- Formats : PDF
View record
-
How to measure and evaluate refrigerant cycles ...
- Author(s) : GOBEL S., VERING C., MÜLLER D., WACHAU A.
- Date : 2022
- Languages : English
- Source: 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
The experimental investigation on a novel trans...
- Author(s) : CAO F., CUI C., WEI X., et al.
- Date : 2019/10
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 106
- Formats : PDF
View record