IIR document

Investigation on solid-liquid equilibrium for binary mixtures of carbon dioxide (R744) and alkanes: Propane (R290) and isobutane (R600a).

Author(s) : SOBIERAJ M., KSIONEK D., PAVKOVIC B.

Type of article: IJR article

Summary

The solid-liquid equilibrium (SLE) of binary systems containing carbon dioxide (R744) and alkanes propane (R290) and isobutane (R600a) was experimentally investigated. A novel experimental setup using the cooling curve method was designed, built and verified, enabling SLE measurements at temperatures down to 173 K. The temperature and pressure of the triple point of carbon dioxide (CO2) were measured. The results for R744 and the binary mixture of carbon dioxide and propane were in agreement with the available literature data, demonstrating the accuracy of the experimental setup. Activity coefficients were determined for the binary mixtures studied. The Schröder and Wilson equations were used to calculate solubility over various temperatures and compositions. The Wilson model produced a very accurate correlation for the studied non-ideal binary mixtures, while the Schröder equation did not provide satisfactory results. Determined activity coefficients and SLE curves should be useful for the design of low-temperature refrigeration systems operating on carbon dioxide mixtures with low global warming potential.

Available documents

Format PDF

Pages: p. 205-214

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Investigation on solid-liquid equilibrium for binary mixtures of carbon dioxide (R744) and alkanes: Propane (R290) and isobutane (R600a).
  • Record ID : 30032012
  • Languages: English
  • Subject: HFCs alternatives
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 154
  • Publication date: 2023/10
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2023.06.020

Links


See other articles in this issue (33)
See the source