IIR document

Maxsorb III/HFC404a as an adsorption pair for renewable energy driven systems.

Author(s) : GHAZY M., ASKALANY A. A., SAHA B. B.

Type of article: IJR article

Summary

This work comes as a part of a series of researches carried out by our team to study and present new materials with distinctive properties suitable for adsorption applications. As we previously studied employment of many Freons within the adsorption cooling systems, this paper expresses a study using HFC404A with activated carbon (Maxorb III). Adsorption of Maxsorb III/HFC404A pair has been estimated experimentally at different temperatures ranging from 25 to 75 °C. Dubinin-Astakhov (D-A) and Tóth equations have been fitted with the experimental data to evaluate the adsorption isotherm, while the adsorption kinetic is evaluated by linear driving force model (LDF) and Fickian diffusion (FD) equations. The maximum adsorption capacity is 2.2 kg R404A/kg activated carbon. The numerical values of the activation energy (Ea) and the pre-exponential coefficient (Dso) are evaluated to be 3429.27 kJ/kg and 5.35×10–13, respectively. Transient simulation modeling has been carried out to predict performance of adsorption cooling system under different operating temperatures of Maxsorb III/HFC404A. Optimum recorded coefficient for performance and specific cooling power is 0.23 and 275 W/kg, respectively.

Available documents

Format PDF

Pages: 12-21

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Maxsorb III/HFC404a as an adsorption pair for renewable energy driven systems.
  • Record ID : 30027835
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 120
  • Publication date: 2020/12
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2020.06.017
  • Document available for consultation in the library of the IIR headquarters only.

Links


See other articles in this issue (42)
See the source