Measurements of oil retention in a microchannel condenser for AC systems.
Number: pap. 2325
Author(s) : YATIM A. S., CREMASCHI L., FISHER D. E.
Summary
In a refrigeration cycle, a small portion of the compressor oil circulates with the refrigerant flow through the cycle components, while most of the oil stays in the compressor. The presence of the lubricant affects the performance of heat exchangers by increasing the pressure losses and adding a thermal resistance to the heat transfer exchange process. The oil effects on microchannel heat exchangers are unique due to their relatively small scale geometry and manifold configuration. In this paper, oil retention in a microchannel type condenser was measured and its effects on heat transfer and pressure drop characteristics are presented. The heat exchanger was a 2 passes, aluminum louvered-fin type condenser that consisted of multiports rectangular microchannels with hydraulic diameter of 0.06 inch (1.7 mm). The refrigerant and oil flow rates were varied and actual operating conditions of an air conditioning condenser for R410A systems were replicated in laboratory. The refrigerant R410A and Polyolester oil mixture was studied at saturation temperature from 85 to 130°F (29 to 54°C) and two refrigerant mass flux that are common for a 4 ton nominal capacity AC system for residential applications. Oil mass fraction (OMF) in circulation with the refrigerant was varied from 0.5 to 5.6 in wt.%. The results indicated that at OMFs of 0.5 wt.% to 1 wt.%, which are common ranges in typical air conditioning systems, the oil retention in the microchannel condenser was less than 5% of the microchannel condenser internal volume for all saturation temperatures and all mass fluxes studied in this work. The oil retained in the condenser increased if the OMF increased and it was measured up to 23% of the total microchannel condenser internal volume when the OMF was 5.4 wt. %. The superheated vapor refrigerant section of the condenser held small amount of oil due to high refrigerant vapor superficial velocities inside the microchannel tubes. At OMFs of 0.5 wt. % the heat transfer capacity of the coil was the same of that of oil free conditions. At high saturation temperature of 130°F (54°C) and high mass flux, the heat transfer capacity of the coil decreased as the OMF increased and some penalization of refrigerant-side heat transfer rate was observed at OMFs as low as 1 wt. %. If OMF increased to about 5 wt. % then the heat transfer capacity of the heat exchanger was penalized by up to 6% and the pressure drops across the condenser augmented up to 19% with respect to the oil free case.
Available documents
Format PDF
Pages: 10 p.
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Measurements of oil retention in a microchannel condenser for AC systems.
- Record ID : 30013577
- Languages: English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2014/07/14
Links
See other articles from the proceedings (203)
See the conference proceedings
Indexing
-
Modeling of lubricant effects in a microchannel...
- Author(s) : BIGI A. A. M., CREMASCHI L., FISHER D. E.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
An experimentally validated model for microchan...
- Author(s) : LI H., HRNJAK P.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Oil retention and pressure drop of R134a, R1234...
- Author(s) : RAMAKRISHNAN A., HRNJAK P. S.
- Date : 2012/07/16
- Languages : English
- Source: 2012 Purdue Conferences. 14th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Refrigerant and lubricant charge in AC heat exc...
- Author(s) : JIN S., HRNJAK P.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
R32 heat transfer coefficient during condensati...
- Author(s) : LÓPEZ BELCHÍ A., ILLÁN GÓMEZ F., GARCÍA-CASCALES J. R., et al.
- Date : 2014/07/14
- Languages : English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record