Numerical modeling of fin-and-tube condenser with wet-wall desuperheating.
Number: pap. 2473
Author(s) : QIAO H., LAUGHMAN C. R.
Summary
Current heat exchanger simulation models typically divide the condenser into three regimes (desuperheating, two-phase and subcooled) and assume that condensation does not start until the bulk refrigerant flow reaches a state of saturated vapor. However, plenty of experiments have verified that condensation can occur much earlier than that when the tube wall surface temperature drops below the dew point of refrigerant even though the bulk flow is still superheated. This phenomenon is called wet-wall desuperheating (also referred to as wet-desuperheating, or condensation from desuperheated vapor in some publications). Wet-wall desuperheating is rarely modelled in the extant heat exchanger simulations due to lack of understanding in its physical process. However, neglecting this important phenomenon may lead to substantial performance prediction errors. This paper proposes a new fin-and-tube condenser heat exchanger model to bridge the research gap. In the proposed model, the heat exchanger is divided into four regimes: dry-wall desuperheating, wet-wall desuperheating, two-phase condensation and subcooled. The existence of dry-wall desuperheating and the onset point of wet-wall desuperheating are determined by rigorous algorithms. Boundaries between different flow regimes are captured to eliminate numerical discontinuities. A tube-by-tube analysis is adopted to allow for the simulation of complex tube circuitries. Simulation studies are performed to demonstrate the capabilities of the proposed model. The results show that wet-wall desuperheating always exists in the condenser with refrigerant vapor entering at the inlet, and neglecting the phenomenon can lead to significant prediction errors for heat exchanger performance.
Available documents
Format PDF
Pages: 10
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Numerical modeling of fin-and-tube condenser with wet-wall desuperheating.
- Record ID : 30024572
- Languages: English
- Source: 2018 Purdue Conferences. 17th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2018/07/09
Links
See other articles from the proceedings (252)
See the conference proceedings
Indexing
-
Modelling and experimental evaluation of a cond...
- Author(s) : PETELIN N., GATARIC P., KITANOVSKI A., et al.
- Date : 2019/08/24
- Languages : English
- Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
- Formats : PDF
View record
-
Effect of microfins on heat rejection in desupe...
- Author(s) : HRNJAK P., KONDOU C.
- Date : 2012/07/16
- Languages : English
- Source: 2012 Purdue Conferences. 14th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
A three-zone simulation model for air-cooled co...
- Author(s) : MARTINS COSTA M. L., PARISE J. A. R.
- Date : 1993/03
- Languages : English
- Source: Heat Recov. Syst. CHP - vol. 13 - n. 2
View record
-
Heat transfer and friction factor characteristi...
- Author(s) : ZAWADZKI A., PLOCEK M., KAPUSTA T., et al.
- Date : 2008/10/15
- Languages : English
- Source: Projektowanie i eksploatacja przyjaznych srodowisku systemów chlodniczych i klimatyzacyjnych. Miedzynarodowa konferencja. XL Dni chlodnictwa.
- Formats : PDF
View record
-
Echangeurs CIAT : le "top" de la condensation.
- Author(s) : NAVARRO J. M., BASTARD J.
- Date : 1992/07
- Languages : French
- Source: Rev. gén. Froid - vol. 82 - n. 6
View record