Recommended by the IIR / IIR document

Numerical modeling of standing wave thermoacoustic devices – A review.

Author(s) : NAWAZ BHATTI U., BASHMAL S., KHAN S., BEN-MANSOUR R.

Type of article: IJR article, Review

Summary

Global environmental concerns have brought the challenge of developing renewable energy technologies to cope up with the world energy needs. Thermoacoustic devices present themselves as a viable alternative to replace conventional refrigeration and power systems due to their minimal carbon footprint. These devices involve complex flow physics encompassing transient phenomenon and conversion of acoustic and thermal energies for their efficient performance. With the rapid advancement in computational capabilities, extensive numerical work is carried out to gain detailed understanding of the thermoacoustic devices. In this paper, a detailed review of the numerical modeling techniques that have been applied in the field of Standing Wave Thermoacoustic Devices (SWTAD) is carried out. At first, a brief review of analytical method is presented and the need for numerical modeling is highlighted. Numerical modeling techniques ranging from simplified linear to detailed Computational Fluid Dynamics (CFD) models are reviewed in detail. Model configurations, capabilities and tools developed and utilized so far in the research area are summarized. Challenges associated with SWTAD and applications modeled using CFD are discussed. The paper concludes with some useful recommendations regarding the numerical modeling of thermoacoustic devices.

Available documents

Format PDF

Pages: 47-62

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Numerical modeling of standing wave thermoacoustic devices – A review.
  • Record ID : 30030841
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 146
  • Publication date: 2023/02
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2022.09.024

Links


See other articles in this issue (41)
See the source