Optimization of peripheral finned-tube evaporators using entropy generation minimization.

Number: pap. 2143

Author(s) : PUSSOLI B., BARBOSA J. Jr, SILVA L. W. da, et al.

Summary

The peripheral finned-tube (PFT) is a new geometry for enhanced air-side heat transfer under moisture condensate blockage (evaporators). It consists of individual hexagonal (peripheral) fin arrangements with radial fins whose bases are attached to the tubes and tips are interconnected with the peripheral fins. In this paper, experimentally validated semi-empirical models for the air-side heat transfer and pressure drop are combined with the entropy generation minimization theory to determine the optimal characteristics of PFT heat exchangers. The analysis is based on three independent parameters, i.e., porosity, equivalent particle diameter and particle-based Reynolds number. The total heat transfer rate is a fixed constraint. The optimal heat exchanger configurations, i.e., those in which the entropy generation number reaches a minimum, are calculated for constant heat flux and constant tube wall temperature boundary conditions. Performance evaluation criteria of fixed geometry, fixed face area and variable geometry were implemented. In all cases, it was possible to determine a combination of independent parameters that provided a minimum entropy generation rate.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Optimization of peripheral finned-tube evaporators using entropy generation minimization.
  • Record ID : 30007143
  • Languages: English
  • Source: 2012 Purdue Conferences. 14th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2012/07/16

Links


See other articles from the proceedings (195)
See the conference proceedings