Reducing energy penalties in carbon capture with organic Rankine cycles.
Author(s) : ROMEO L. M., LARA Y., GONZÁLEZ A.
Type of article: Article
Summary
Carbon capture and storage are considered one of the most promising technologies to reduce emissions in a midterm. Its main drawback is the energy penalty caused by the CO2 separation and compression processes. It increases the CO2 avoided cost and it is an important driving force to propose new and improved capture methods with lower energy requirements. In the case of oxyfuel systems, power plant efficiency penalty is 10–13 percentage points. It is mainly caused by the Air Separation Unit and CO2 compression. The possibilities for the integration of these two necessary processes are limited due to the low temperature of their waste energy. One possibility to take advantage of this low-temperature heat is by using Organic Rankine Cycles, which generate power by means of an organic compound as working fluid. This paper proposes the integration of an ORC with the low-temperature processes associated with oxyfuel combustion in order to reduce its energetic penalty. Results show that a reduction in power requirements around 25% could be achieved. It decreases the efficiency penalty from 11 to 8.2 percentage points and contributes to make more attractive this technology. A comparison between different organic compounds is also conducted to select the suitable substances which minimize penalties in the integration process. [Reprinted with permission from Elsevier. Copyright, 2011].
Details
- Original title: Reducing energy penalties in carbon capture with organic Rankine cycles.
- Record ID : 30005280
- Languages: English
- Source: Applied Thermal Engineering - vol. 31 - n. 14-15
- Publication date: 2011/10
- DOI: http://dx.doi.org/10.1016/j.applthermaleng.2011.05.022
Links
See other articles in this issue (21)
See the source
Indexing
-
Low-temperature syngas separation for CO2 captu...
- Author(s) : BERSTAD D., NEKSA P., ANANTHARAMAN R.
- Date : 2011/08/21
- Languages : English
- Source: Proceedings of the 23rd IIR International Congress of Refrigeration: Prague, Czech Republic, August 21-26, 2011. Overarching theme: Refrigeration for Sustainable Development.
- Formats : PDF
View record
-
Low-temperature CO2 capture technologies: appli...
- Author(s) : BERSTAD D., ANANTHARAMAN R., NEKSÅ P.
- Date : 2013/08
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 36 - n. 5
- Formats : PDF
View record
-
Experimental investigation of low temperature C...
- Author(s) : TRAEDAL S., BERSTAD D., STANG J.
- Date : 2019/05/08
- Languages : English
- Source: Cryogenics 2019. Proceedings of the 15th IIR International Conference: Prague, Czech Republic, April 8-11, 2019.
- Formats : PDF
View record
-
CO2 capture by anti-sublimation using integrate...
- Author(s) : CLODIC D., YOUNES M., RIACHI Y., et al.
- Date : 2011/08/21
- Languages : English
- Source: Proceedings of the 23rd IIR International Congress of Refrigeration: Prague, Czech Republic, August 21-26, 2011. Overarching theme: Refrigeration for Sustainable Development.
- Formats : PDF
View record
-
Technoeconomic optimisation of systems for liqu...
- Author(s) : PEDERSEN R. C., ROTHUIZEN E., OMMEN T., JENSEN J. K.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record