Working fluid selection and operating maps for organic Rankine cycle expansion machines.

Number: pap. 1546

Author(s) : QUOILIN S., DECLAYE S., LEGROS A., et al.

Summary

Fluid selection for the Organic Rankine Cycle has been the object of an abundant literature. Most of the scientific publications focus on the cycle thermodynamic efficiency in order to select the best candidate. However, other thermodynamics properties, such as molar mass, or vapor density condition the whole design of the cycle, and its cost. For example, the molar mass influences the number of stages required in the case of an axial turbine; the volume ratio between expander supply and exhaust conditions the possibility to use a volumetric expander (whose internal volume ratio is limited); the vapor density at the expander exhaust determine the size of the expander, and of the condenser; etc. This paper considers a whole range of ORC applications, in terms of power (from the kW-scale to the multi-MW plants), heat source temperature (from 90°C to more than 300°C) or heat source nature (solar, biomass, waste heat recovery, geothermy, etc.). For each of these applications, a screening of the available fluids is performed, and their thermodynamics performance are compared with respect to the foreseen application. A detailed analysis of the most common expansion machines is then conducted, by comparing their respective operating maps for each fluid and for each application type. The considered expansion machines are the radialinflow turbine, the screw expander, and the scroll expander, since they are the most widely used in commercial applications and/or in scientific literature.

Available documents

Format PDF

Pages: 10 .

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Working fluid selection and operating maps for organic Rankine cycle expansion machines.
  • Record ID : 30007589
  • Languages: English
  • Source: 2012 Purdue Conferences. 21st International Compressor Engineering Conference at Purdue.
  • Publication date: 2012/07/16

Links


See other articles from the proceedings (82)
See the conference proceedings