Application of near optimal tower control and free cooling on the condenser water side for optimization of central cooling systems.

Number: pap. 3624

Author(s) : JARAMILLO R., BRAUN J., HORTON T.

Summary

This paper presents an application of tower fan control for optimization of the performance of chiller plants combined with free cooling on the condenser water side. Mathematical models including all the main components of an existing cooling plant were developed and implemented in MATLAB. Simulation results include a mapping of the performance of the plant working in free cooling mode which was used to select control parameters for free cooling operation. Then a mapping of the plant operating with chillers was developed to find the correlation between load and near-optimal air flow, which is the basis of the near-optimal tower control (NOTC) strategy. Finally, simulations were carried out using three consecutive years of historical data to predict the performance of the plant under three different control strategies: 1) tower fan control aiming to keep the temperature of the water supplied to chiller condensers at a constant set point (current control strategy), 2) NOTC and 3) NOTC and free cooling combined. Comparison of the performance of the plant with the baseline (constant condenser water temperature) shows that significant savings can be achieved through the implementation of NOTC along with free cooling. It is expected that the methodology and results of this study provide a useful framework for optimization of cooling plants.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Application of near optimal tower control and free cooling on the condenser water side for optimization of central cooling systems.
  • Record ID : 30013593
  • Languages: English
  • Source: 2014 Purdue Conferences. 3rd International High Performance Buildings Conference at Purdue.
  • Publication date: 2014/07/14

Links


See other articles from the proceedings (66)
See the conference proceedings