Recommended by the IIR / IIR document
CO2 dual source solar assisted heat pump with PV-T evaporators: performance and control of low pressure.
Number: 0641
Author(s) : ZANETTI E., AZZOLIN M., CONTE R., GIROTTO S., DEL COL D.
Summary
In this work, a dual source air/solar heat pump working with CO2 as the refrigerant is presented. The heat pump produces hot water using air or solar radiation as the low-temperature heat source. When operating with the air source, a finned coil heat exchanger is used while photovoltaic-thermal (PV-T) solar collectors are employed as evaporators to exploit the solar radiation. In the PV-T collectors, part of the incident solar radiation is converted into electrical power by the PV modules and part is converted into heat to evaporate the CO2. Furthermore, the refrigerant circuit has been designed to allow the solar evaporator to operate in dry expansion mode or flooded mode. The latter configuration can be very efficient since it manages to avoid maldistribution issues. The functioning of the heat pump with the PV-T evaporators operating in dry expansion mode and flooded mode has been experimentally investigated and compared with the use of the finned coil evaporator. Controlling the superheating in the evaporator is a key issue, not only for the COP of the heat pump but also, in the PV-T modules, for the optimal working conditions of the solar cells. The control of the low pressure is also an issue because when working in solar mode the evaporation temperature is disconnected from the air temperature. In order to investigate all this, a numerical model of the heat pump, including distributed parameters models of the heat exchangers, has been developed and validated. The model allows to study the main advantages and challenges of the presented dual source heat pump and to assess the control of the superheating at the evaporators’ outlet.
Available documents
Format PDF
Pages: 11
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: CO2 dual source solar assisted heat pump with PV-T evaporators: performance and control of low pressure.
- Record ID : 30031442
- Languages: English
- Subject: Technology
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Publication date: 2023/08/21
- DOI: http://dx.doi.org/10.18462/iir.icr.2023.0641
Links
See other articles from the proceedings (491)
See the conference proceedings
Indexing
-
Study of a PV-T collector working as an evapora...
- Author(s) : ZANETTI E., AZZOLIN M., GIROTTO S., DEL COL D.
- Date : 2020/12/07
- Languages : English
- Source: 14th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2020). Proceedings. Kyoto, Japon, December 7-9th 2020.
- Formats : PDF
View record
-
Seasonal performance of a CO2 dual s...
- Author(s) : CONTE R., ZANETTI E., AZZOLIN M., DE GIOIA CARABELLESE C., CALABRESE L., DEL COL D.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
PVT Geo Coupled Air to Water Heat Pump System T...
- Author(s) : LEE E. J., LEE K. S., KANG E. C., KIM Y. J., EVGUENIY E., YANG L.
- Date : 2021/08/31
- Languages : English
- Source: 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
View record
-
Performance improvement of a novel BIPV/T-energ...
- Author(s) : WANG F., YOU T.
- Date : 2023/08/21
- Languages : English
- Source: Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Formats : PDF
View record
-
The role of internal heat exchanger in an R744 ...
- Author(s) : ZHANG W., HRNJAK P.
- Date : 2022/07/10
- Languages : English
- Source: 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record