Experimental study of R134a evaporation heat transfer in a narrow annular duct.

Author(s) : CHEN C. A., LEE C. Y., LIN T. F.

Type of article: Article

Summary

An experiment is carried out here to investigate the evaporation heat transfer and associated evaporating flow pattern for refrigerant R134a flowing in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm. In the experiment, the effects of the duct gap, refrigerant vapour quality, mass flux and saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. For the duct gap of 2.0 mm, the refrigerant mass flux G is varied from 300 to 500 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, vapour quality from 0.05 to 0.95, and refrigerant saturation temperature from 5 to 15°C. While for the gap of 1.0 mm, G is varied from 500 to 700 kg/m2.s with the other parameters varied in the same ranges as that for surface tension = 2.0 mm. The experimental data clearly show that the evaporation heat transfer coefficient increases almost linearly with the vapour quality of the refrigerant and the increase is more significant at a higher G. Besides, the evaporation heat transfer coefficient also rises substantially at increasing q. Moreover, a significant increase in the evaporation heat transfer coefficient results for a rise in saturation temperature, but the effects are less pronounced in the narrower duct at a low imposed heat flux and a high refrigerant mass flux. Furthermore, the evaporation heat transfer coefficient increases substantially with the refrigerant mass flux except at low vapour quality. The authors also note that reducing the duct gap causes a significant increase in evaporation heat transfer coefficient. In addition to the heat transfer data, photos of R134a evaporating flow taken from the duct side show the change of the dominant two-phase flow pattern in the duct with the experimental parameters. Finally, an empirical correlation for the present measured heat transfer coefficient for the R134a evaporation in the narrow annular ducts is proposed. [Reprinted with permission from Elsevier. Copyright, 2009].

Details

  • Original title: Experimental study of R134a evaporation heat transfer in a narrow annular duct.
  • Record ID : 2010-1393
  • Languages: English
  • Source: International Journal of Heat and Mass Transfer - vol. 53 - n. 9-10
  • Publication date: 2010/04
  • DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.011

Links


See other articles in this issue (4)
See the source