Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink.
Author(s) : KHOSHVAGHT-ALIABADI M., SAHAMIYAN M., HESAMPOUR M., et al.
Type of article: Article
Summary
The cooling performance of the sinusoidal–wavy minichannel heat sink (SWMCHS) having square cross section is experimentally investigated. The effects of specific geometrical parameters of the SWMCHS, i.e. wave length (l?=?10, 20, and 40?mm) and wave amplitude (a?=?0.5, 1.0, and 2.0?mm), are examined. Each SWMCHS is made of aluminum and contains eight minichannels in parallel. The water–ethylene glycol mixtures (100:0, 75:25 and 50:50 by mass) are selected as working fluids to investigate the effect of coolant. This study covers Reynolds number in the range of 60–4000, covering both the laminar and the transition flow regimes based on the applied working fluid. Heat transfer and fluid flow characteristics of the SWMCHSs are obtained and the results are compared with a straight MCHS. The results show that the thermal performance of the SWMCHSs is much better than the straight MCHS. Both the heat transfer coefficient and the pressure drop inside the SWMCHSs increase proportionally, as the wave length decreases and the wave amplitude increases. It is found that in the studied range, the water–ethylene glycol mixture of 100:0 shows the greatest values of the heat transfer rate to pumping power ratio. Also, there is an optimum geometry for the SWMCHS (a?=?40?mm and l?=?10?mm), which has the maximum values of the heat transfer rate to pumping power ratio. Finally, correlations are developed for the SWMCHSs as function of Reynolds number, Prandtl number, and geometrical parameters.
Details
- Original title: Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink.
- Record ID : 30017103
- Languages: English
- Source: Applied Thermal Engineering - vol. 92
- Publication date: 2016/01/05
- DOI: http://dx.doi.org/10.1016/j.applthermaleng.2015.09.015
Links
See other articles in this issue (17)
See the source
Indexing
-
Correlations for heat transfer and pressure dro...
- Author(s) : JOKAR A., HOSNI M. H., ECKELS S. J.
- Date : 2005
- Languages : English
- Source: ASHRAE Transactions. 2005 Annual Meeting, Denver, Colorado, USA. Volume 111, part 2 + CD-ROM.
View record
-
An experimental study on the heat transfer char...
- Author(s) : LIM J., SONG S. S., LEE D., et al.
- Date : 2017/07/20
- Languages : English
- Source: 8th international conference on compressors and refrigeration, 2017.
- Formats : PDF
View record
-
Heat transfer and friction factor characteristi...
- Author(s) : ZAWADZKI A., PLOCEK M., KAPUSTA T., et al.
- Date : 2008/10/15
- Languages : English
- Source: Projektowanie i eksploatacja przyjaznych srodowisku systemów chlodniczych i klimatyzacyjnych. Miedzynarodowa konferencja. XL Dni chlodnictwa.
- Formats : PDF
View record
-
Study on a CFD simulation of flow trend in plat...
- Author(s) : KIM S. S., SEONG Y. J., JEONG H. G., et al.
- Date : 2010/06/07
- Languages : English
- Source: ACRA2010. Asian conference on refrigeration and air conditioning: Tokyo, Japan, June 7-9, 2010.
- Formats : PDF
View record
-
Experimental investigations of propane minichan...
- Author(s) : GAGAN J., BUTRYMOWICZ D., DUDAR A., et al.
- Date : 2015/08/16
- Languages : English
- Source: Proceedings of the 24th IIR International Congress of Refrigeration: Yokohama, Japan, August 16-22, 2015.
- Formats : PDF
View record