IIR document

Numerical investigation on spray cooling of skid-mounted CNG air cooler under the influence of crosswind.

Author(s) : LIU L., ZHANG W., LI J., XIE J., LIU X.

Type of article: IJR article

Summary

Air cooler is a critical heat dissipation equipment applied in the field of oil and gas storage, which is mainly used to control the temperature during oil and gas storage and ensure the safety of oil and gas storage. After the installation of the spray cooling system on the skid-mounted compressed natural gas (CNG) air cooler Suqiao gas storage, the inlet air temperature of the air cooler decreases, resulting in reduced compressor power consumption. This effectively addresses the issue of unit shutdown due to high temperatures during the summer. However, the actual spray effect on-site reveals the impact of crosswinds, which poses a challenge. In this study, the flow field and causes of the skid-mounted CNG air cooler equipped with a spray cooling system under the influence of crosswinds are analyzed. Additionally, a solution involving the installation of a baffle is proposed. The results highlight that crosswinds have an adverse effect on outdoor spray cooling. With the installation of the baffle, the low-temperature area expands, resulting in lower temperatures. The cooling range is approximately 2 K, effectively counteracting the negative effects of crosswinds.

Available documents

Format PDF

Pages: 59-69

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Numerical investigation on spray cooling of skid-mounted CNG air cooler under the influence of crosswind.
  • Record ID : 30032791
  • Languages: English
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 167
  • Publication date: 2024/11
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2024.07.025

Links


See other articles in this issue (22)
See the source