Reducing display bottle cooler energy consumption using PCM as active thermal storage.

Number: pap. 2457

Author(s) : BEEK M. van, JONG H. D.

Summary

The final results of an analytical and experimental study in reducing the energy consumption of a display bottle cooler using Phase Change Material (PCM) as an active thermal storage are presented. The objective of the study was to design and built a 350 dm3 glass door bottle cooler having an appliance energy consumption reduction of over 75% compared to state of the art bottle coolers (2010 figures). Calculation results show that active thermal storage using PCM can be effectively applied to store and release cold on demand in small cooling appliances subjected to high peak loading. It is shown that by using the thermal storage smaller cooling systems can be applied, resulting in system operation at reduced temperature lift and thereby at higher efficiency. A validated control solution, including a sensor which detects the state of the PCM, is presented. It is shown that for a bottle cooler, optimum performance results for a dual forced air evaporator system, with one evaporator embedded in the PCM and the other in direct contact with the air stream. To obtain minimum product cooling times a different refrigerant flow path through the evaporators is required between the main modes of operation (i.e. half reload recovery and steady state). The optimum position of the PCM embedded evaporator is upstream of the main evaporator with respect to the airflow. A design of a display bottle cooler applying standard heat load reduction measures in combination with PCM as active thermal storage is presented. The design is based on using a 5.19 cm3 R-600a compressor in combination with forced air heat exchangers. The integration of the PCM in the appliance cooling system and the control aspects resulting are discussed in detail. Experimental test results of a demonstrator cabinet at an ambient of 25°C and 60 %Rh show that a 350 dm3 glass door bottle cooler having a total energy consumption (TEC, including half reload recovery) of < 1 kWh/24 h can be built while achieving a half reload recovery within 16 h at an ambient of 32°C and 65 %Rh.

Available documents

Format PDF

Pages: 10 p.

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Reducing display bottle cooler energy consumption using PCM as active thermal storage.
  • Record ID : 30013417
  • Languages: English
  • Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2014/07/14

Links


See other articles from the proceedings (203)
See the conference proceedings