Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water.

Author(s) : ITO K., MOYNIHAN C. T., AUSTEN A.

Type of article: Article

Summary

If crystallization can be avoided when a liquid is cooled, it will typically form a glass. Near the glass transition temperature the viscosity increases continuously but rapidly with cooling. As the glass forms, the molecular relaxation time increases with an Arrhenius-like (simple activated) form in some liquids, but shows highly non-Arrhenius behaviour in others. The former are said to be 'strong' liquids, and the latter 'fragile'. Here the authors show that the fragility of a liquid can be determined from purely thermodynamic data (as opposed to measurements of kinetics) near and below the melting point. They find that for most liquids the fragilities estimated this way are consistent with those obtained by previous methods and by a new method at temperatures near the glass transition. But water is an exception. The thermodynamic method indicates that near its melting point it is the most fragile of all liquids studied, whereas the kinetic approach indicates that this discrepancy can be explained by a fragile-to-strong transition in supercooled water near 228 K, corresponding to a change in the liquid's structure at this point.

Details

  • Original title: Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water.
  • Record ID : 2000-0425
  • Languages: English
  • Source: Nature - vol. 398 - n. 6727
  • Publication date: 1999/04/08
  • Document available for consultation in the library of the IIR headquarters only.

Links


See the source