Transcritical carbon dioxide microchannel heat pump water heaters. 2. System simulation and optimization.
Number: pap. n. R11, 2519
Author(s) : GOODMAN C., FRONK B., GARIMELLA S.
Summary
This paper presents the development of a transcritical CO2 heat pump water heating system model incorporating analytical heat exchanger models and an empirical compressor model. This study investigated the effects of a suction line heat exchanger (SLHX) and once-through versus multi-pass water heating schemes. The once-through systems outperformed the multi-pass systems by 10% for the system without a SLHX and 15% with a SLHX. However, a gas cooler twice as large is required. The SLHX was shown to benefit system performance at higher evaporator temperatures with improvements of 16.5% for the once-through and 4% for the multi-pass systems. This study can be used to improve the design of microchannel based transcritical CO2 heat pumps; evaluate the impact of varying water inlet temperature, desired outlet temperature and evaporation temperature on system performance; and quantify the effect of differential diurnal electricity rates on system operating costs for these different operation schemes.
Available documents
Format PDF
Pages: 10 p.
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Transcritical carbon dioxide microchannel heat pump water heaters. 2. System simulation and optimization.
- Record ID : 30000752
- Languages: English
- Source: 2010 Purdue Conferences. 13th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2010/07/12
Links
See other articles from the proceedings (121)
See the conference proceedings
-
Transcritical carbon dioxide microchannel heat ...
- Author(s) : GOODMAN C., FRONK B., GARIMELLA S.
- Date : 2010/07/12
- Languages : English
- Source: 2010 Purdue Conferences. 13th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
View record
-
Optimal discharge pressure in transcritical CO<...
- Author(s) : YE Z., WANG Y., SONG Y., YIN X., CAO F.
- Date : 2020/10
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 118
- Formats : PDF
View record
-
Transcritical carbon dioxide microchannel heat ...
- Author(s) : GOODMAN C., FRONK B. M., GARIMELLA S.
- Date : 2011/06
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 34 - n. 4
- Formats : PDF
View record
-
Water-coupled carbon dioxide microchannel gas c...
- Author(s) : FRONK B. M., GARIMELLA S.
- Date : 2011/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 34 - n. 1
- Formats : PDF
View record
-
Water-coupled carbon dioxide microchannel gas c...
- Author(s) : FRONK B. M., GARIMELLA S.
- Date : 2011/01
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 34 - n. 1
- Formats : PDF
View record