IIR document

Alternative energy storage using a domestic hot water solar-assisted heat pump with PV collector/evaporator and HC refrigerant.

Number: pap. n. 1537

Author(s) : ISAZA-ROLDÁN C. A., QUITIAQUEZ W., NIETO-LONDOÑO C., et al.

Summary

This work presents the thermodynamic analysis of a direct-expansion solar-assisted heat pump to provide domestic hot water. An aluminum bare collector/evaporator and a compressor that uses refrigerant R600a as working fluid compose the system. Boiling and condensation temperatures are -8 and 54.4 °C, respectively. The system test is conducted under different weather conditions (i.e. rainy, cloudy and clear day), obtaining a variation of the coefficient of performance between 4.07 and 6.72 for an average solar radiation in the range of 451.6 and 721.5 W·m-2. The water final temperature attains a value between 47.7 and 58.6 °C. The system works with solar energy, both thermal and photovoltaic, to replace conventional energy sources conducing to decrease the carbon reduction factor (CFC) in 89.5 % being lower than the 1977.2 kg of annual CO2 emissions produced by an electric shower.

Available documents

Format PDF

Pages: 13

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Alternative energy storage using a domestic hot water solar-assisted heat pump with PV collector/evaporator and HC refrigerant.
  • Record ID : 30026537
  • Languages: English
  • Source: Proceedings of the 25th IIR International Congress of Refrigeration: Montréal , Canada, August 24-30, 2019.
  • Publication date: 2019/08/24
  • DOI: http://dx.doi.org/10.18462/iir.icr.2019.1537

Links


See other articles from the proceedings (632)
See the conference proceedings