Two-phase heat transfer of low gwp ternary mixtures.

Number: 210049

Author(s) : AZZOLIN M., BERTO A., BORTOLIN S., DEL COL D.

Summary

Refrigerant blends obtained mixing hydrofluorocarbons (HFC) and hydrofluoroolefins (HFO) have recently been proposed as substitutes for high GWP (Global Warming Potential) fluids employed in refrigeration and airconditioning systems. As a general trend, the dimension of pipes used in heat exchangers is decreasing: diameters around 5 mm are often employed in finned-tube coil heat exchangers and minichannels heat exchangers (with internal diameter around 1-2 mm) are also a common solution for the automotive sector and for air-cooled chillers. Condensation and flow boiling heat transfer coefficients of zeotropic ternary mixtures R455A (R32, R1234yf and R744 at 21.5/75.5/3.0% by mass composition) and R452B (R32, R1234yf and R125 at 67.0/26.0/7.0% by mass composition) have been measured inside a minichannel (0.96 mm diameter) and inside a conventional tube (8.0 mm diameter). R455A exhibits a temperature glide around 10 K at 35 °C bubble temperature whereas R452B presents a temperature glide around 1 K at 40 °C bubble temperature. The experimental results are compared with selected correlations for condensation and flow boiling heat transfer which account for the additional mass transfer resistance occurring during two-phase heat transfer of zeotropic mixtures. It emerges the importance of including the mass transfer resistance for the prediction of heat transfer coefficient when considering high temperature-glide mixtures.

Available documents

Format PDF

Pages: 10

Available

  • Public price

    20 €

  • Member price*

    15 €

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Two-phase heat transfer of low gwp ternary mixtures.
  • Record ID : 30028613
  • Languages: English
  • Subject: HFCs alternatives
  • Source: 2021 Purdue Conferences. 18th International Refrigeration and Air-Conditioning Conference at Purdue.
  • Publication date: 2021/05
  • Document available for consultation in the library of the IIR headquarters only.

Links


See other articles from the proceedings (184)
See the conference proceedings