IIR document
Comparative analysis of HFO-CO₂ cascade vs CO₂ transcritical refrigeration systems in two supermarkets. Part II: Evaluation of heat recovery and integration of heat pumps based on field measurements.
Author(s) : JAVANSHIR S., TONINELLI P., STOPPATO A., SAWALHA S.
Type of article: IJR article
Summary
This study examines heat recovery from refrigeration systems and the operational benefits of integrating heat recovery in two medium-sized supermarkets in northern Italy based on field measurements. A supermarket operates with a R1234ze/CO₂ cascade system, which is integrated with heat pumps, and the other is a CO₂ transcritical system. The system description, along with the processes of data collection and validation, is discussed in detail in part I of the article. Both systems are equipped with heat recovery and began operating in 2023. The floating condensation model was developed in MATLAB, utilizing REFPROP to calculate the coefficient of performance (COP) of heat recovery. Furthermore, the COP of heat pumps and the COP of each stage in floating condensation mode are calculated. Results show R1234ze/CO₂ cascade system integrated with a heat pump and air conditioning fully meets the cooling and heating demands of the supermarket’s sales area, by using 12 % more annual electricity compared to the floating condensation mode. The continuous heat recovery in the R1234ze/CO₂ cascade system leads to a higher amount of heat recovery compared to the CO₂ transcritical system. The heat recovery of the CO₂ transcritical system is not used as a main source to cover the heat demand. In this system, due to lower heat demand, heat recovery most often occurs in subcritical mode, and it does not fully utilise its heat recovery potential. Only 39 % of the total heat recovered occurs in transcritical mode, with the remaining heat rejected to the air. COP of heat recovery of this system is higher than the cascade system; however, the values in both systems for ambient temperature lower than 4 ◦C are comparable. Furthermore, the results show that in floating condensation mode, the COP of the CO₂ transcritical system in the MT and LT stages is higher than the cascade system at temperatures below 16 ◦C and 9 ◦C, respectively, this trend reverses at temperatures above these values. The global COP of the cascade system consistently remains higher than that of the CO₂ system.
Available documents
Format PDF
Pages: 12 p.
Available
Public price
20 €
Member price*
Free
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Comparative analysis of HFO-CO₂ cascade vs CO₂ transcritical refrigeration systems in two supermarkets. Part II: Evaluation of heat recovery and integration of heat pumps based on field measurements.
- Record ID : 30034386
- Languages: English
- Subject: Technology
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 177
- Publication date: 2025/09
- DOI: http://dx.doi.org/https://doi.org/10.1016/j.ijrefrig.2025.06.003
Links
- See also: Comparative analysis of HFO–CO₂ Cascade vs. CO₂ transcritical refrigeration systems in two supermarkets, Part I: Evaluating efficiency at medium and low-temperature stages.
Corrigendum to “Comparative Analysis of HFO-CO2 Cascade vs CO2 Transcritical Refrigeration Systems in two supermarkets. Part II: Evaluation of Heat Recovery and integration of heat pumps based on field measurements” [International Journal of Refrigeration, Volume 177, September 2025, Pages 156-167].
See the source
Indexing
-
Themes:
CO2;
HFO et HCFO;
Supermarkets, display cabinets - Keywords: R744; HFO; Transcritical cycle; Cascade system; Heat pump; Comparison; Supermarket; Heat recovery
-
Corrigendum to “Comparative Analysis of HFO-CO<...
- Author(s) : JAVANSHIR S., TONINELLI P., STOPPATO A., SAWALHA S.
- Date : 2025/11
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 179
- Formats : PDF
View record
-
Comparative analysis of HFO–CO₂ Cascade vs. CO₂...
- Author(s) : JAVANSHIR S., TONINELLI P., STOPPATO A., SAWALHA S.
- Date : 2025/11
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 179
- Formats : PDF
View record
-
Semi-empirical analysis of HFC supermarket refr...
- Author(s) : MOTA BABILONI A., GIMÉNEZ-PRADES P., MAKHNATCH P., ROGSTAM J., FERNANDEZ MORENO A., NAVARRO-ESBRÍ J.
- Date : 2022/05
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 137
- Formats : PDF
View record
-
R744 refrigeration as an alternative for the su...
- Author(s) : SOOBEN D., PUROHIT N., MOHEE R., et al.
- Date : 2019/07
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 103
- Formats : PDF
View record
-
Le CO2 dans les supermarchés nordiques: évoluti...
- Author(s) : MATTHIESEN H. O., MADSEN K. B., MIKHAILOV A.
- Date : 2011/06
- Languages : French
- Source: Revue générale du Froid & du Conditionnement d'air - vol. 101 - n. 1114
View record