IIR document

Energy, exergy and environmental (3E) analysis of low GWP refrigerants in cascade refrigeration system for low temperature applications.

Author(s) : BUTT S. S., PERERA U., MIYAZAKI T., THU K., HIGASHI Y.

Type of article: IJR article

Summary

This study presents a comparative energy, exergy, and life cycle climate performance (LCCP) analysis of various refrigerants in a cascade refrigeration system (CRS). The refrigerants analyzed in the low-temperature cycle (LTC) include R-23, R-116, R-41, R-170, R-1150, and R-1132a whereas high-temperature cycle (HTC) utilizes R-404A, R-455A, R-454C, R-459B, R-161, R-290, R-1270, and R-1234yf. For the first time for CRS, LCCP analysis is conducted and fourth generation low GWP and less flammable prospective refrigerants R-1132a, R-455A, R-454C, R-459B are analyzed. The study aims to find a refrigerant pair that outperforms R-23/R-404A in terms of thermodynamic efficiency while also considering environmental impact and safety considerations. Among the 48 refrigerant groups analyzed, the study reveals that R-170/R-161 and R-41/R-161 demonstrate superior performance in terms of thermodynamic efficiency and environmental impact assessment whereas the largest exergy destruction components are HTC/LTC compressors. However, if flammability is a major concern, the recommended refrigerant pair is R-1132a/R-1234yf, as it is a suitable alternative in terms of safety considerations while still maintaining favorable thermodynamic and environmental performance.

Available documents

Format PDF

Pages: 373-389

Available

  • Public price

    20 €

  • Member price*

    Free

* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).

Details

  • Original title: Energy, exergy and environmental (3E) analysis of low GWP refrigerants in cascade refrigeration system for low temperature applications.
  • Record ID : 30032268
  • Languages: English
  • Subject: Technology
  • Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 160
  • Publication date: 2024/04
  • DOI: http://dx.doi.org/10.1016/j.ijrefrig.2023.12.020

Links


See other articles in this issue (33)
See the source