Exergy based methodology for optimized integration of vapor compression heat pumps in industrial processes.
Number: pap. 2301
Author(s) : BESBES K., ZOUGHAIB A., CARLAN F. de, et al.
Summary
Industrial processes may use heat pumps to recover low-grade heat or to combine heating and cooling needs. In many cases, this technology leads to reduced energy consumption and greenhouse gases emissions. In this paper, a methodology, based on exergy analysis of heat sources and heat sinks, helping in optimizing industrial heat pumps design is presented. The optimization variables are: the refrigerant choice (pure fluid, azeotropic mixture, non azeotropic mixture), the thermodynamic state of the refrigerant (subcritical, supercritical) and the architecture of the heat pump (single heat pump, heat pump in reverse series). The heat pump is modeled in Modelica language: "pinch" method is used to model the heat exchangers and the compressor model is based on an isentropic efficiency assumption. The objective function is the maximization of the heat pump system exergy efficiency. Genetic algorithm is used to perform the optimization. The methodology is applied on a case study of an industrial process where a fluid is heated from 60°C to more than 120°C, and industrial effluents are available at 50°C.
Available documents
Format PDF
Pages: 10 p.
Available
Public price
20 €
Member price*
15 €
* Best rate depending on membership category (see the detailed benefits of individual and corporate memberships).
Details
- Original title: Exergy based methodology for optimized integration of vapor compression heat pumps in industrial processes.
- Record ID : 30013202
- Languages: English
- Source: 2014 Purdue Conferences. 15th International Refrigeration and Air-Conditioning Conference at Purdue.
- Publication date: 2014/07/14
Links
See other articles from the proceedings (203)
See the conference proceedings
-
Exergy analysis of combined absorption-compress...
- Author(s) : AHRENS M. U., ERTESVAG I. S., EIKEVIK T. M.
- Date : 2020/12/07
- Languages : English
- Source: 14th IIR-Gustav Lorentzen Conference on Natural Refrigerants (GL2020). Proceedings. Kyoto, Japon, December 7-9th 2020.
- Formats : PDF
View record
-
Theoretical study on a modified single‐stage au...
- Author(s) : LIU J., LIU Y., YAN G., YU J.
- Date : 2021/02
- Languages : English
- Source: International Journal of Refrigeration - Revue Internationale du Froid - vol. 122
- Formats : PDF
View record
-
Ammonia as natural refrigerant in electrically ...
- Author(s) : ALLY M. R., SHARMA V., ABDELAZIZ O.
- Date : 2018/06/18
- Languages : English
- Source: 13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018). Proceedings. Valencia, Spain, June 18-20th 2018.
- Formats : PDF
View record
-
A storage heat pump using an "ozone friendly" r...
- Author(s) : RIFFAT S. B., SHANKLAND N.
- Date : 1992/01
- Languages : English
- Source: Int. J. Energy Res. - vol. 16 - n. 1
View record
-
ENERGY SAVING IN DRYING PROCESS WITH CLOSED CIR...
- Author(s) : WANG H., LIANG M.
- Date : 1987/08/24
- Languages : English
- Source: Development in refrigeration, refrigeration for development. Proceedings of the XVIIth international Congress of Refrigeration.
- Formats : PDF
View record